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Functions and Calculus
David Tall

Mathematics Education Research Centre
University of Warwick
COVENTRY CV4 7AL, UK
e-mail: D.O.Tall@csv.warwick.ac.uk

1. INTRODUCTION

One purpose of the function is to represbotv things changewith this
meaning it is natural to move on to consider the calcatusepts of the
rate of change(differentiation) and cumulative growth (integration)
together with the remarkable fundamental theorersatdéulus that tells us
that differentiation and integration are essentially inverse processes.

The calculus traditionallyocuses on mastery of symbolic methods for
differentiation and integration and applyinbese to solve aange of
problems. It is both a climax of school mathematics and a gateway to
further theoreticaldevelopments. This position between elementary and
advanced mathematics allows it to be approachetifierent ways, with a
consequent variety of curricula. In some countries calculus is studied in an
intuitive form in school, with the limitoncept introduced dynamically in
terms of a variable quantity ‘gettingjose to’ a fixed limiting value. In
others the focus is turned towards the formal theorymathematical
analysisstarting from a formak—0 (or equivalent) definition of thémit.

Other curricula occupy a midway position, building on both intuitidleas
but also highlighting formal definitions.

Mamona-Downs (1990) compared the two extremes—the intuibim@
in British schools and the logicdbrm in Greekschools andconfirmed
previous research that the intuitive approach gives side-effects wlhgth
with the formal definition inways which will bediscussedater in this
chapter, whilst showing that the formal appro@&chphasisethe logic but
gives less conceptual insight.

Traditional Americancalculus texts occupy the middiground, with
students usually meeting the calculus for the first time at college where it is
considered appropriate to includspects ofthe formal theory. Here the
vast financial rewards available when a text is widely adopted has the effect
that no book leaves out anythimgportant contained in a competitor, so
calculus texts algrow to enormous sizéMost traditional calculusbooks
include all the topics an instructor might wish to teach, witham@e
number of workedexamples and exercises to satisfy the most anxious
student. Even so, the heavy diet of procedural exercises protmiosee
rates between 30% and 50% (Anderson & Loftsgaarden 1987; Peterson
1987). Despite isolated attemptstgting something really newsuch as
Keisler's (1976) pioneering work to introduce an intuitive infinitesimal
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approach, the Americasystem began toeach a position of gridlock. In
the fateful year 1984, E. E. Moise wrote:

For the overwhelming majority o$tudentsthe calculus is not &ody of
knowledge, but a repertoire of imitative behaviour patterns.

In that same Orwellian year, tignerican Mathematical Monthlyarried a
full page advertisementor the computer algebraystem MACSYMA
which

... cansimplify, factor or expanexpressions, solvequationsanalytically
or numerically, differentiate, compute definite and indefinit¢egrals,
expand functions in Taylor or Laurent series.

Suddenly the whole rationale of the calculus became questioned—if
computer software can do all the things that a student is required to do on a
calculus examination, why do they need to learn to do it anyway?

Although mainframe developments of such symbol-manipulators
occurred almosexclusively in theUSA and Canada, the late 1970s and
early 1980s saw personal computers being launched in educational projects
all over the world. School curriculum builders were beginning to
investigate the use of computers in mathematics in general and calculus in
particular. At first often all thatvas available was @aomputer and a
programming language such BASIC in which developers began trite
numerical algorithms, encouraging students to do the same. Then in the
early 1980s high resolution graphiesrived and graphical software for
calculus began being written in profusion.

In 1985 the first real practical symbol manipulatarrived on a
personal computer in the form dMuMath to be superseded by itster,
more user-friendly re-incarnatioderive (Stoutemyer et all985; 1988).

With the proliferation of new computer approaches todakulus and
the perceived log-jam of traditional calculus, th@alculus Reform
Movement’ began in the USA. The quést reform toA LeanandLively
Calculus(Douglas 1986) was answered byadlying call in Calculus for
the New Century: A Pump, Not a Filt€steen 1988) to make calculus a
genuine driving forcdor learninginstead of afilter which weeded out
poor studentsSubsequent developmentgere all stimulated invarying
degrees by the use of new technology.

The technological revolution brought with it new market-driven factors,
with large companies cooperating with educators to develop new tools. The
costs of delivering the calculuscurriculum were escalating and new
assessmemnethods were being considered to take account shaents
now solved many calculus problems using technological supports.

The most economically viable approaches in recent timegguegghic
calculators with graphic, numeric arslibsequently symbolic facilities.
Though they lack the full facilities of a desk-top computer, they have the
great advantage gfortability, allowing the student tase them anywhere
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and at any time. Meanwhile, computer algebra systems, previously only
available on mainframes, migrated to personal computers, leading to
sofware suchMathematica Maple, Reduce Theorist and MathCad In
varying degreesthese offer environments for presentingurriculum
material, writing reports, performingalculations, manipulating symbols,
drawing a range of graphs, and programming e&tensions at thdesire
of the user.Many practising mathematicians found them to be a creative
paradise fornew experimental research and in turn they offeredice
range of possibilities in teaching and learning calculus.

At the same time the motivatirfgctors behind theeforms weremany
and varied. They included altruistic desires to maldadculus more
understandable for a wider range sfudents, commercial desires to
produce saleable products, practical considerations of what aatealied
to be taught, reflection on the type of mathematics that is suitable in a
technological age, and a growing aspiration to researchlghming
process to understand how individuals conceptualise calculus concepts.

2. COGNITIVE CONSIDERATIONS
2.1 The Role of Learning Theories in the Calculus Reform

A characteristic of recent developments has been a focus of attention not
only on the mathematics to be taught, but also the mental processes by
which it is conceived and learnt (e.g. Dubinsky 1992). Kaput (1992; 1993)
and Nemirovsky (1993) focus on the way that younger childrave
intuitive sense of concepts such d@distance, velocity, acceleration, which
can be utilised in conjunction with computer simulations to saspects of
calculus at dar earlier age. Moreover, th@mulations involved, such as
driving a car along a highway—Ilinked to numeric and graplsplays of
distance and velocity against time—allow a study of change which is not
limited to functions given by standard formulae (figure 1).

This widens the representations available in the calculus to include:

* enactiverepresentations with human actions givingemse of
change, speed and acceleration,

* numeric and symbolicrepresentations that can be manipulated
by hand or by computer, including the possibility of
programming by the student,

 visual representations that can be produced roughly by hand or
more accurately and dynamically on computers,

and

» formal representations in analysis that depend fonmal
definitions and proof.
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Figure 1: MathCars: simulating relationships between time, distance and velocity

A diagrammatic representation of the growth of representations and the
building of the concepts of calculus may be formulated as in figure 2.

CMathe matical andysis)

Formal

C Elementary calculusj

Symbolic
Visual )
Numeric

Enactive

Figure 2: Representations in calculus/analysis

This diagram carries an explicit theoretical viewpoint—tleatactive
experiences provide an intuitidmsisfor elementarycalculus built with
numeric, symbolic and visual representations, but thetthematical
analysis requires a higher level of formal representation.

The cognitive growth by which this occurs requiresgnificant
constructions and re-constructions of knowledge. For instagmagtive
sensations of moving objects may givesensethat ‘continuouschange’
implies the existence of a ‘rate of change’, suggesting an equivalence
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between the theoretically differerformal concepts of continuity and
differentiability. More significantly, the formal definitions and theorems of
analysis require subtly different cognitive qualities which aralmost
certainly inappropriate in a first course in calculus. Thigygests a
fundamental fault-line in‘calculus’ courses which attempt to build on
formal definitions and theorems from the beginning.

The way in which numeric and symbolic representatioieselop
involves an interestindorm of cognitive growth. There areecurring
cycles of activity in which grocess such as counting, becomesancept
such asnumber. Otheinstances include the process of addition becoming
the concept of sum, the process of equal sharing becoming the concept of
fraction, the process of calculating ratio becoming the concept of rate, and
the limiting process becoming the concept of limit.

Various authors, including Piaget (1972), Dubinsky (1991) &fatd
(1991), theorise that the growth of human knowledge starts aations
(first on the environment), some of which become repeatable processes and
are later conceived as objectstireir own right to be manipulated on a
higher level byfurther mental processes. Gray and Tall (1994) name the
combination ofprocess and carept produced by the process which may
both be evoked by the same symbol,peocept. This proves to be
particularly apposite in the study of the calculus becadsaction
derivative integral and the fundamentdimit notion are allexamples of
procepts. Indeed, the theory of functions and calculus can be summarised in
outline as the study of the ‘doing’ and ‘undoing’ of the processes involved
(figure 3).

Procept
Change: doing calculating values
FUNCTION undoing solving equations
Rate of change: doing differentiation
DERIVATIVE undoing anti differentiation,

solving differential equations
Cumulative growth: doing integration
INTEGRAL undoing| fundamental theorem of calcujus

Figure 3: Three procepts in functions and calculus

The various representations each htwar own characteristics thafffer
potential cognitive advantages and disadvantaiges representing the
underlying limit procept and for ‘doing’ and ‘undoing’ each of the procepts
of function, derivative and integral. These include using visieds for
conceptual insight, numerical computatiofer practical experience,
symbolic manipulationperformed by the computer to suppthbse with
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limited facility in algebraic manipulation, and programming of various
kinds to encourage the student to construct procedures on the computer to
represent calculus concepts.

Modern calculugeforms (both withinthe USA and elsewhere) seek to
use these representations to make the subpeote practical and
meaningful. Cottrill, Dubinsky et al. (199%ise theprinciple thatactions
become repeatablprocessesvhich are encapsulated asbjectsand then
related in a wideschemain a theoretical development given theronym
APOS. This is realised by programming activities which place visualisation
at the end of the line as a visual representation of the function constructed
through encapsulating a programming process as an object. Talhaath
(1983) see the visualisation of the gradient of the graph as anstagly in
the calculus to be linked to numeric and symbolic representations. Here the
visualisationsare focused mainly orgraphical representations of the
function as a graphGleason et al. (1990) produce a coupsssed as much
on mathematical belief as on cognitive growth, in which:

One of theguiding principles is the ‘Rule offhree,” which saysthat
wherever possible topics should taeight graphically and numerically, as
well as analytically. The aim is to produce a course where the three points of
view are balanced, and where students seeh major idedrom several
angles. (Hughes Hallett 1991, p.121)

There is therefore a spectrum mdssible approaches to the calcufuem
real-world calculus in which intuitions can be built enactively using visuo-
spatial representations, through the numeric, symbolic graphic
representations in elementary calculus and on tofahmal definition-
theorem-proof-illustration approach ofnalysis which is as much
concerned withexistenceof solutions as with their actual construction.
(Figure 4.)

Faced with such aarray ofpossible approaches, certdiroad differences
should first be noted. Traditionatalculus used to be anixture of
manipulative symbolism and qualitative visualisation wighossible
deductive elements from analysis. The computer allows not oniyreeric
guantitative approach toarry outthe many calculationsequired in,say,
computing the approximate area under a curve, it also allows graphical
representations to be drawn at the will of the user, offeringpssible
conceptual approach based on visualisation.tum this broadens the
approach to the calculus by allowing functions to be defined by data or
numeric procedures, with solutions of differential equations given in
numeric and visuaform where there may be ngolutions in terms of
standard formulae.

Underlying all these approaches to the calcuhmyever, is the limit
concept which researctshows to have deeply embedded cognitive
difficulties (summarised in Cornu 1992). The enactive real-world approach
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Representations
Visuo- Numeric Symbolic Graphic Formal
spatial
Enactive Quantitative | Manipulative Qualitative Deductive
Procepts observing estimating | manpulating visualizing defining
experiencing| approximating limiting conceptualizing deducing
Change: doing distance, numerical algebraic graphs set-theoretic
FUNCTION velocity etc. values symbols definition
changing
with time
undoing solving numerical solving visual solution intermediate
problems solutions equations where graphd| value & inverse
of equations| symbolically Cross function
theorems
Rate of doing || velocity from|[ numerical symbolic | visual steepnegiormal derivativd
change: time-distancd gradient derivative
graph
DERIVATIVE | undoing solving numerical | antiderivative | visualize graph| antiderivative—
problems &.|| solutions of | —symbolic of given existence of
finding differential solutions of gradient solutions of
distance equations differential differential
from velocity equations equations
Cumulative | doing distance fron) numerical are¢  symbolic | area under graghformal Riemanr
growth: time-velocity integral integral
INTEGRAL graph as limit of
sum
undoing|| computing know Symbolic know area Formal
velocity from|| area—find Fundamental| — find graph Fundamental
distance numerical Theorem Theorem
function
REAL-
WORLD THEORETICAL CALCULUS ANALYSIS
CALCULUS

Figure 4: A spectrum of representations in functions and the calculus

deals with this at a practical approximation level. The graplapaloach
allows the Ilimit notion to be handledmplicitly, for instance, by
magnifying the graph to see it looking ‘locally straight’ so that the gradient
required is that of the visibly straight graph. Tlhislps the move into
elementary calculus without stumblirgver the limit concept, but the
deficiency may need to be addressed at a &tage wheriurther cognitive
reconstruction may prove necessary to cope with formal concepts.

At the formal end of the spectrum there is a wmnceptualgulf
between practical calculations or symbol manipulations in calculus and the
theoretical proof oexistence theorems in analysis. | conjecture that this is
so wide that itcauses aevere schism in coursésarticularly in‘college
calculus’) which attempt tdridge the gap betweecalculus andanalysis
during the first encounter with the subject. This is implicitly recognised by

Functions & Calculus 7



reforms which include only those topics which are found toessential.
For instanceProjectCalcat Duke University (Smith & Moore 1991) found
that this meant that ‘numerical algelwasin, but the mean valudheorem
was out’ (as quoted iArtigue & Ervynck 1993, p.92). lgoes without
saying that the mean value theorem inhabits the realmexistence
theorems in analysis and sitsncomfortably in the computations of
elementary calculus. This implicitly underlines the difficult chdsatween
elementary calculus and formal analysis.

2.2 Students

Students taking calculus course®ver a wide range of background
knowledge, ability and motivation. This complicates not only the design of
the curriculum, butalso the interpretation of research evaluating its
effectiveness. The problem in tlealculus is highlighted by the fact that
some students appear to make connections and others do not. Thus, a
course which is designed to giggeater insight by makingonnections
may be a positive help for some and a failure for others.

Krutetskii (1976, p.178) performed a wide range sbfidies on 192
children selected bytheir teachers as ‘vergapable’ (or ‘mathematically
gifted’), ‘capable’, ‘average’ and ‘incapable’. He®und that the gifted
children remembered general strategiather than detail, curtailedheir
solutions to focus on essentials andre able to provide alternative
solutions. Average children remembered more specific detail, shortened
their solutions only after practice involving several of faene type, and
generally offered only a single solution to a problem. Incapebiklren
remembered only incidental, often irrelevant detail, had lengthy solutions,
often with errors, repetitions and redundancies, and were unable to begin
to think of alternatives.

He alsofound that'giftedness’ was manifested whifferent ways. Of his
34 ‘gifted’ children, 6 were classified as ‘analytic’, 5 as ‘geometric’ and 23
as ‘harmonic’, exhibiting a spectrum of relative preferencesvinbal-
logical and visual thinking.

Students taking calculus are usuatlgpable’ or‘gifted’, but with wider
access, they include many of ‘averag#ility and below. Given the wide
possible spectrum of approaches by such a range of studeb&goines
evident that methods that may be essential to some mayappropriate
for others. For example, the repetition of regular problerhgh seems
necessary for curtailment of solution processes for the average student may
be less necessarfor the gifted, whilst causing inflexible procedural
orientations in others. Meanwhile, the flexibility in switchifigm one
representation to another, which seems a characteristic of gifted ‘harmonic’
thinkers, may prove difficult for the average student. A growmgnber
of research studies report students having difficulties relating
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representations, and others show some students movong one
representation to another but failing to move flexibly back and forth.

In considering research into thaalculus it is well to have such a
spectrum of student possibilities in mindr research on one group of
students in one context may wellrn up different characteristidgom
another situation without the two necessarily contradicting eztbler.
There is also the chicken-and-egg problem: are students petzdise they
‘have’ certain abilities, or do thepecomegifted because theydevelop’
these abilities? Such questiodig) deep into theoretical and philosophical
iIssueswhich have their roots in the developmentstfidents longoefore
they begin to study the calculus. We now turn our attenticutdaculum
issues, cognisant of the differences that may occur in the students for whom
the curriculum is being designed.

3. FUNCTIONS
3.1 The Function Concept

The notion of function came to prominence first in the writings of Leibniz
in the late seventeenth century where he used thefterotio to describe a
variabley whose value depended on a changing variablaitially it was
conceived as having an explidbrmula such asy=x2 and, in the next
century, thiswas denoted by themore general formulatioy=f(x). From
the beginning a function in the calculus was linked tatitgph G—the set

of points §, f(x)) in the cartesian plane.

In the twentieth century, the visual idea of the grdph- B became
considered as a set of ordered pairs Yj O AxB |x O A, y=f(x)}, giving
the possibility of a set-theoretic definition. A function may nowabyg set
G of ordered pairs$s = {(x, y) O AxB | x OO A, y OO B}, provided only
that for everyx [0 A there is ay O B such thatX, y) 0 G and that thig/ is
unique (if &, y1), (X, y2) O G theny; =y»).

Such a development isot without its conceptual difficulties and
cognitive struggles. Sierpska (1992) described how the subtle changes in
meaning were accompanied by difficult conceptlatacles that needed to
be overcome. For instance, an individuddose experience of functions in
terms of formulae and computation will find it difficult taccept a
definition which does not involve thesstributes. Sfard (1992) indicated
how the operational view of mathematics in terms of processes to be
carried outseemsinevitably to precede thstructural view using objects
and formal definitions, both in history and cognitive development.

Although the set theoretic definition proved higldyccessful in the
systematic formulation of mathematics, it wass successful when adopted
for teaching purposes in thélew Mathematics’curricula of the 1960s.
Although students werld that a function had a domai», a rangeR and
a set of ordered pairx,(y) with x(1D, y[IR, what theyexperiencedvas a
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formula such ag/=x2 or f(x)=sinx+cox. Surveying the function concept in
Malaysia, Bakar (1991) found the set-theoretic conegsin principle at

the root of the curriculum in every year from thge of 11 onwards. But

in practicethe functions were first linear, then quadratic, then polynomial
and later rational, trigonometric, exponential or logarithmic. In service
courses where the formal definitidmas less emphasisnemories of it
decline markedly in engineers and others studying mathematics lbgsthe
year of university.

It is valuable to distinguish carefully between floemal mathematical
concept specified by a concept definition and the widencept image’
including ‘all the mental pictures arabsociategroperties angrocesses’
related to the concept in the mind of the individual (VinneH&shkowitz
1980; Tall & Vinner 1981; Dreyfus & Vinner 1982). Vinner (1983) found
that, even students who could give@rect set-theoretic definition of a
function were likely tousetheir intuitive images in answeringjuestions
about functions. Around 40% of the high school students he tested thought
that the graph of a function should have other propersash as being
regular, persistent, reasonably increasing, etbilst many did not think
the graph in figure 5 is a function.

Figure 5: A unfamiliar graph without an obvious formula

He found many students thinking that a function should be given by a single
formula, or, if two rules were given theitomains should be half lines or
intervals.

Markovits et al. (1986; 1988) showed that if students vesieed how
many functions could be drawn through given points, then two paAinE
often evoked only a single straight line through thescause ‘two points
can be connected by only one straight line’, whilst the segwagh in
figure 6 may be considered not to allow a function atbakausethere
seems to be two sets of points on two distinct lines.
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Figure 6: How many graphs can you draw which pass through these points?

Barnes (1988) found that a majority of grade 11 sclstotents and
university students did nategardy=4 as a functionpecause it does not
dependon x, but thatx2+y2=1 is a functionbecause it igamiliar. Bakar
and Tall (1992), Ferrini-Mundy and Graham (1994) and others all found
that students had various specific conceptions of a function: that it was
given by a formula, that if was a function ok, it must includex in the
formula, that its graplwas expected to have a recognisable shapg.
polynomial, trigonometric or exponential), and thatvds to havecertain
‘continuous’ properties. These had idiosyncratic meanings, instance,
‘continuous’ might mean that the grafdontinues’, so that guadrant of a
circle y=v(1-x2) (0<x<1) would not be allowabldor some students
because this graph should be ‘continued’ to give a fuller curve (figure 7).
Such concepimagery is of course not confined to studentscliéarly
occurs in all areas of human endeavour, including the historical
development of mathematics where individuals have concept imeligésd
to their experience in the prevailing cultufuccessivgenerations do not
replace all old elements with new, instead they retaspectsthat prove
useful and graft on more powerful aspects. So it is that mathematicians and
teachers retain dynamimleas of changing variables alongsittemal
notions ofordered pairs in a potent but perplexiogmposite of ideas to
pass on to the next generation.

A
N The graphy=v(1-x?)
(for 0<x<1)
;' >
may be “continued”
,/’ round the circle

—————

Figure 7: ‘Continuing’ the graph of a function
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3.2 Computer approaches to functions

The computer provides a new environment to explore the function concept.
Cuoco (1994) found that an approach to functions through programming in
Logo gave significantly different insightSom a traditional approach.
Students using paper and pencil drawings of gragas them agieometric
shapegatherthan a process of inputtingand outputtingy. On theother
hand, thosgrogramming in Logo not onlgaw therelationship in input-
output terms, they were able to think of a function as an object in its own
right. Similar conclusions have been found structured BASIC which
incorporates procedural functions (Li & Tall 1993) and ISETL
(Breidenbach et al. 1992; Cuoco 1994). ISETL (Interactive SET Language)
has afurther advantage in that the narfe a functioncan be used as an
input for another function, hence enhancing its object status.

This shows that théraditional notion of a function represented by a
formula and its graph is cognitively different from the notion of function
as defined set-theoretically and different aghmm that conceived in
terms of process—object encapsulation.

When software is used teepresent function concepts, this usually
done graphically, sometimes with a facility tepresent them inabular
form. Theway in which the graph is often drawn as a curve mayse
students to see it as a wholebject. Some programs, such as
RandomGraphe(Goldenberg et al. 1992) plot random functaalues to
build the graph as a collection of points (figure 8). Although this gives a set
of points of theform (x, f(x)), further activities may be necessary to see
the function process assigning to each valuetbt valuey=f(x).

-
BN -
——

Figure 8: Successive pictures building up a random plot as a collection of points

Other programs link with alternative forms of representation,rfstance,
Function Probe (Confrey 1992) allows graphs to be manipulated
enactively using the mouse twansform graphs by translating, stretching,
reflecting. Such anapproach treats the graph as a single object to be
transformed.
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Figure 9 shows a problem to transform the top left parabola to give the
large inverted parabola. The first mowhas been made, translating the
upper left parabola to the right.

U=... g
ut

i1 Here the parabol
i1 on the top left ha
i1 been translated t
i the right

+2n
=
(=]

Translate ‘%’ . -

Reflect (—=

Stretch §§§§-||||

Figure 9: Starting a sequence of moves to translate the top left parabola to the larger inverted parabola

Such software highlights the problems in interpreting the meaning of
translations, forinstance a horizontal shift to theght by aconstant ¢
changes thgraphy=f(x) to y=f(x—c) causegreat difficulties forstudents
(Dreyfus & Eisenberg 1987). This is not only a problem linkergactive
and symbolic, but also symptomatic of subtle underlying difficulties often
hidden in the mathematical theory (Smith & Confrey 1994). (In ¢hee,
shifting the graph to the right is equivalent to shifting the domain to the
left, and the change in the function symbolism corresponds tdattex
rather than the former.)

3.3 Graphic Calculators

Graphic calculators provide a combination of calculatonymeric
programminglanguage and graphical output. More recent modedvide
a growing number of other facilitiessuch as symbol manipulation,
spreadsheet facilities, data handling. These little tools can be caroadd
in and out of the classroom and their very availabiig caused them to
be included in a wide variety of courses.

Demana and Waits sawheir value as tools and immediatebegan
constructing courses to use them at O8tateUniversity. Meanwhile, in
the UK, the School Mathemati¢&oject incorporated graphic calculators
into their calculus coursédecause theyere in the hands of thstudents
who were already making use of the facilities.

There have been powerful claims for multiple representations:
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the feature of computetbat hasrecently caused mosicitementamongst
mathematics educators is the ease of mofrimg one form of information
representation (numerical, graphic and symbolic) to anotheéheasser
searches for conceptual understanding and problem solutions.

(Fey 1989, p.255)

But is the power being used to its full potential? Keller and Hi($684)
found that students often showed a strqmgference for ongoarticular
representation (which they quantified in terms of a statistically significant
frequency of selectiofrom tables, graphs and equations, using2atest
(p<0.05)). (Figure 10.)
100
90 4 Pre-test Post-test
80 4
70 -
60 |
50 1 O Graph
40 |
30 4
20 -
10 -
0 4

B Table

H Equation

Calculator Traditional Calculator Traditional

Figure 10: Significant sttudent preferences for specific representations

The students were givenfeee choice of which course to followhose
choosing the trational route includinfar more students preferring
symbolic representations and both showing a significant numbstudénts
preferring touse tablesAfter the coursesponein either grouppreferred
tables, with both groups showing increased preferericesgraphs and
symbols, and the traditional course becoming even nsymbolically
biased.

It was also noted that when the problems were purely mathematical with
no specific application, morstudentspreferred touse symbols, whilst in
problems involving a specific application context, prefererioessymbols
decreased and graphs were more likely to be selected.

Hart (1991) alsaeported thattudents using supercalculatsowed
definite preferences for certain representations:

» Students confident in symbol manipulation skills tend to use
alternate representations only whensuccessful at finding an
answer symbolically,

» students who do not hawecess to graphing calculator do not
typically choose to use the graphical representation even when it
Is provided,
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» traditional students werenore likely to rely on asymbolic
representation to solve problems without considering @her
possibilities.

(Hart 1991, quoted in Beckmann 1993, p.110)

Furthermore, students who were not confident in symbol manipulation
were more likely to use their calculator. When a solution feasd, it was
rarely checked by usin@ther representations, even whemwds wrong.
Nevertheless, experimental students showeagteater conceptual
understanding than traditional students and thveass ample evidence that
success on the course was not correlated with previous grades so that

students who might biermed as ‘symbolically illiterate’; can lseiccessful

in learning and understanding calculus throuigé use of graphic and

numeric tools. (Beckmann 1993, p.112).
The tendencyfor many students toprefer certain representations can
produce unforeseen results. For instanGaldwell (1995) expected
students to find the roots and asymptotes of the rational function

F(x) = X(X—4)
(x+2)(x-2)

by algebraic means, only to be given a substantial number of approximate
solutions such as 0.01 and 3.98 using a graphing calculator. Here a link to a
graphical representatiowas made, withoutelating back to the precision
of the algebra.

Boers andJones(1993) reportstudents use of a graphic calculator to
draw a graph of

2
X" +2x-3
f(X)=——
2X"+3x-5
which has a removable discontinuity xatl. They found that moré¢han
80% of the students had difficulty reconciling the graph with the algebraic

information, for example, drawing asymptote suggested by thero in
the denominator, despite the graphic evidence of the calculator (figure 11).

e \
V | -

t
.
|
$
]
1
]

W
Wﬂ-l

Figure 11: Graphic calculator display and student graph
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Some experiments show significant changes when wgenghic calculators

over a succession ofcourses. Quesada (1994) introduced graphics
calculators into a pre-calculus course where previously an average of 60%
of the students finished with a grade D or F, or withdrew from the course.
They ‘did not have a clear understanding of the basic families of functions’,
‘could not read basic graphs’ and ‘had not developed basic study habits’. To
encourage the use of algebraic skills, there was a policy that no merks
given for a graphic ordecimal solution if an algebraic solution was
possible. Over three courses, the number of experimesitalents
obtaining D, F, or withdrawingvas 43% compared with 69% in the
control group. Of the totals taking the final examination, 53% of the
experimental students obtained A or B compared with 19% otdhérol
students. When the students moved on to calculus courses, the experimental
students again obtained substantiddisger percentages of grades A and B

in Calculus | andll, though the positionwas marginally reversed in
Calculus 11l (Quesada 1995).

In these variougesearchstudies we seéhe use of technology giving
alternative ways of approaching the function concept with accompanying
advantages and disadvantages. Used imaginatietier studentcontrol
there is evidence ofreater student involvement andtess likelihood of
withdrawal, but there is also evidence of idiosyncratterpretation of the
computer’s representations. Whilst gifted students may have the ability to
interchange between representations and focus on the most relevant
information, capable students may also benefit significantly fronptveer
of the software, yet use the available facilities in less flexible ways.

4. LIMITS AND REAL NUMBERS
4.1 Cognitive difficulties with the limit concept

At the gateway to the calculus stands timeit concept which must be
handled either explicitly or implicitly. Explicitly it is usually treated in
terms of considering expressions such as

2 2
im(X+h) -
-0 h
In ‘intuitive’ terms this may be considered by varyihglynamically to see
what happens as- 0. For h#£0 it simplifies to Z+h, and ash ‘tends to
zero’, this expression visibly becomes Blowever, this has various hidden
problems. Théanguageused, with terms liketéends to or ‘approachesor
‘has alimit’ all suggest that the expressigats close tdhe limit, but can
not equal it (Schwarzenberger & Tall 1978). The fact that the
simplification can only be donfor hz0, yet to obtain the limit onputs
h=0 also contributes to the conflicktudentsinvariably seethe limit as a
processand find it difficult to encapsulate as a lindbncept Instead of

I
h
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conceiving of the limit as a specific value to be found, studentsfatars

on the idea of a tiny quantith that is ‘as small as one desires’,

encapsulating this idea as a kind of ‘cognitive infinitesimal’ (Cornu 1992).
Williams (1991) found that a student might wbH#erent conceptions of

limit selected according to the particular context being considered, without

being concerned about possible overall consistencies:

And | thought about all the definitions that we de&h, and | think they're
all right—they’re all correct in away andthey're all incorrect in a way
because they camnly apply to acertain number ofunctions,while others
apply to otherfunctions, but it'slike talking about infinity orGod, you
know. Our mind is only so limited that you don’t know tieal answer, but
part of it. (Williams 1991, p.232)

When ten students were selected with concept images of a limit at variance
with the definition (such agets closeto, but does not reach’), a series of
five interviews with each in which the conflicts were confronted failed to
produce any significant change:

The data of this study confirm students’ procedwghamic view of limit,
thatis, as andealization of evaluating th&unction at points successively
closer to a point of interesthe dataalso suggesiat there arenumerous
idiosyncratic variations on this theme, sometltgm extremely difficult to
dislodge. (Williams 1991, p.235)

4.2 Procedural consequences of conceptual difficulties

When faced with conceptual difficulties, the student must learn to cope. In
previous elementary mathematics, this coping involve=sarning
computational and manipulative skills mssexams. If the fundamental
concepts of calculus (such as the limit concept underpinning differentiation
and integration) prove difficult to master, one solution is to focus on the
symbolic routines of differentiation and integration. At least this resonates
with earlier experiences in arithmetic and algebravimch a sequence of
manipulations are performed to get an answer.

The problem is that such routinesry soon become jushat—routine,
so that student begin to find it difficult to answer questions that are
conceptually challenging. The teaclsmmpensates by setting questions on
examinations that students can answer and the vicious cirgeooédural
teaching and learning is set in motion. As a result, conceptuadections
become less likely to be made. For instance, Eisenberg ($882)ed that
students often failed to connect differentiation and integration as inverse
processes, simply noting that there were distinct procedures to cope with
each.

For those students who take an initial calculus course based on
elementary procedures, thereeMdence that this may have an unforeseen
limiting effect on their attitudes when they take a more rigorous course at a

Functions & Calculus 17



later stage. Commenting on the results of a large study comparing the
results of students taking advanced placement calculus courses in schoaol,
Ferrini-Mundy and Gaudard (1992) found that

it is possiblethat proceduraltechnique-oriented secondary schoolirses
in calculus may predispose students to attend more to the procedural aspects
of the college course. (p.68)

Arriving at college and finding conceptual difficulties in the calculus,
students can be seen to be developing short-term techniques for survival:

Much of what our studentsave actually learned.—more precisely, what
they have inventedor themselves—is a set of ‘coping skills’ fgetting
pastthe nextassignmentthe nextquiz, the nextexam.When their coping
skills fail them, they inventnew ones.The new ones don’thave to be
consistent withthe old ones;the challenge is t@uessright among the
available options and not to get faked out by the teacher’s ujigkgtions.
... We see some ahe ‘best’ students irthe country;what makeshem
‘best’ isthat theircoping skills havenvorked better thanmost for getting
them pastthe various testing barriers by which vgert students. We can
assure youhat thatdoes not necessariljeanour studenthave anyreal
advantage in terms of understanding mathematics.

(Smith & Moore 1991, p. 85)

Selden, Mason and Selden (1989; 1994) showed that students could learn to
perform well on standard tasks, but as soon as a more unusual task was
given, the success rate dropped alarmingly. This was investigated using two
guestionnaires. One had routine questions such as:

If f(x)=x-1, find f'(x),
or
If f(x) = x5+%, where isf increasing?
The other consisted of non-routine questions such as:

. X<1,
Let f(x)= élaxz
Fox® +x+1, x>1
Find a andb so thaff is differentiable at 1.

Of nineteen grade A and B students, none could solventimeroutine
problem above and two thirds could not compkatg of five non-routine
problems on the paper. Their average routine sewms 74% but the
average non-routine score was 20%.

4.3 Infinitesimal concepts

In an attempt to make the calculus more intuitively conceptual, one method
might be to build on the intuitions that students adopt natunathgn
dealing with dynamic limit concepts. In &alculus made Easyat theturn
of the century,Silvanus P. Thompson approached the calculus usiyg
guantities and begged the reader ‘not to give the author away nor to tell the
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mathematicians what a fool he really is’. It proved to be a satisfying book
precisely because the notion of ‘infinitely small’ is so cognitively appealing.
When a logical approach using infinitesimalsas introduced as
‘nonstandardanalysis’ (Robinson 1966) it had only limited impact. Its
subsequent use in a calculus text (Keisler 1976) had a lisut=zss, even
though Sullivan (1976) showed that students following such an approach
had a better grasp of the underlyingncepts andvere better orformal

€-0 questions than those following a standard calculus course.

Frid (1992; 1994) compared the effects of three approaches to the
calculus: a technique-oriented calculus course, a ‘concepts first’ course, and
one using intuitive non-standard analysisere the limitwas described in
terms of ‘rounding off’ values to give the limiting valughefound that
students using infinitesimal language wdéae more likely to be able to
verbalise subtle conceptual idedor instance, Jennifer (following the
technique-oriented course) could easily handle a problem with implicit
differentiation but could not explain what the limit notatibor the
derivative meant. On the other hand, Neill, following the non-standard
course, explained the derivative saying ‘if you were to magnify that
function infinitely it would look like a straight line’, then related it to the
gradient where the ‘rise and the run would be infinitesimal’. A closer look
at the language used by the students will shasteaterwillingness to talk
coherently about the concepts in infinitesiniims. However, there are
still underlying beliefs similar to those experienced Isfudents
approaching calculus in an intuitive dynamic way.

4.4 The underlying number system

Although mathematicians may think of the real numbers in terms of limits
of decimal expansions, or a completedered field, or a corresponding
geometric representation of the number line, closer inspection reveals our
concept images to be considerably more diffuse and self-contradictory. For
instance, we believe that a point has e’ and yet, somehow, th#tese
can make up a visual ‘real line’.

Romero i Chiesa and Azcéarate-Gimenez (1994) asked studentnlzer
of conceptual questions about theal number line, both in terms of
decimals and the visual representation. They found absoluteqvidence
to suggest that students had any intuitive idea of the mathemagaél
line’. Three questions provoked interesting reactions:

* Imagine a number line. What do you see?
* Imagine this is magnified, what do you see now?
* What happens at infinite magnification?

47% of students questioned began by seeing the line as a whole and 28%
saw elements int—ifrequently reported aslisks or as little spheres. At
infinite magnification this changed to 20% seeing a line and 3@&&éng
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individual elements. The response of the reader might be interesting on this
one. Theclassical mathematician may say theal numbers have no
infinitesimals, so the third parhas no meaning, but using non-standard
analysis it is perfectly in order to do the magnification ilarger fieldR*

and then restrict the view only to elements of the realRin€he answer is

that at infinite magnification, there will only bene real point inview
(because two points in view wouldiffer by an infinitesimal quantity
before magnification, and ilR—which hasno infinitesimals—these two
points must be one and the same!)

Monaghan (1986) found that students were comfortable witlole
numbers and rationals on the line, and came to be familiarisedotidr
numbers such a$2, m and e, but regarded infinitdecimals as somehow
‘improper’ because they ‘go on forever’ and never reach their final limit.

Using decimal representations has side-effects #rat not always
immediately apparent. Decimals expressed to a finite numbplacés are
discrete so that to, say, four decimalaces, there is dirst positive
decimal, namely 0.0001. Wood (1992) found that a significant minority of
mathematics majorafter a year ofknalysiswere able to affirm thathere
was noleast positive real numbgbecause ik were the leastx/2 would be
smaller), but there wasfast positivenumber(‘point many noughts one’).
This extrapolation of finite decimals can inadvertendguse different
views with the limiting process astends toa depending on whether it is
viewed geometrically (allowing‘smooth’ movement) or as decimal
numbers (perhaps in more discrete steps).

5. CALCULUS
5.1 Visualising Calculus Concepts

A potent visual approach using computer graphics is to magnifgrégeh

of a function. Thisusesthe same essential idé@m non-standar@nalysis
(that a differentiable graph under infinite magnification is a straight line).
In the computer version, as the magnification increases, the dpaké
lesscurved, and when it looks visibly straight, then the gradient of the
graph is represented by the gradient of the line on the sc&sein an
approach can use the visible limitations of computer graplioghasising
that what is seen is only ampproximation of the mental concept, yet
making the notion of limiimplicit in the magnification procedurather
than explicit in a formal definition.
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By drawing graphs on the

f(x)=x+sinx+sin3xs/2

computer and having aecond
window in which part of the
graph can be magnified, it is

4

Mmagny %

possible to see that some graphs
look progressivelyless curved
as they are magnified to a

-2

-4

S

greater degree (Figure 12; Tall
1985).

x=2
y=2.76959

Figure 12: Magnifying a locally straight graph

A graph with thisproperty
Is called ‘locally straight’. It is
possible to build up the
gradient function of a locally
straight graph by computing

the numerical gradient |
betweenx andx+c for smallc
at points along the graph, anc
hence, ‘see’ thgradientgraph

and experimentally conjecture
its formula (figure 13).

Fix)=s5inx

For

c=ils 418

from x=—-nw to o

Figure 13 : Building the gradient function of sinx

gradient function
(F{utrai-FLluddro

It is also sensible to link this process with the symbimiionulae at the
same time(particularly in simplecasessuch asy=x2) so that the visual
insight supports the symbols used for meophisticated manipulations and
computationsSuchapproaches have been adopted in syllabuses in the UK
and elsewhere (School Mathematics Project 1991, Barnes 1991).

Further visual insights which support sophisticated ideasairalysis
which were not long ago considered impossible to convey to novices now
prove to be visuallyasy toimagine. For instance, the notion different
left and right gradients at a point candeen magnified as ‘aorner’ and
the graph of a non-differentiable function simply looks wrinkledeary
level of magnification (Figure 14; Tall 1986).

Once differentiation iseen as the
gradient of the graph under
magnification, ‘undoing’ differen-
tiation simply means knowing the
gradient and finding the related
graph. This generalises to finding
the solutions of differential
equations which can bgerformed
numerically by computer software
and displayed visuallyfigure 15;
Hubbard & West 1990).
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Figure 14: Magnifying the nowhere differentiable
blancmange function
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DH/DT=1*1-t Point
T T =6.120000

Figure 15: A family of solutions of a differential equation

Integration can be viewed as finding the area under a graph, and this can be
visualised as adding up the approximate areas of thin singer the
graph. There are known cognitive difficulties here. For instance, Schneider
(1993, pp.32, 33) reports that, in considering upper and lower sums for the
functiony=x3from 0 to 1 by taking more and more rectangles (figLég,

some students think that ‘as long as the rectangles have a thickness, they do
not fill up the surface under the curve, and when they become reduced to
lines, their areas are equal to 0 and cannot be added.’

>
0 1 0 1
Figure 16: Lower and upper sums

The limit process contains implicit conceptudistacleqSierpin ska 1985
1987). Forinstance some students believe that the process is potentially
infinite, going on forever, but that it cannot reach its conclusion.

Given that the areA(x) from a fixed pointa to a variable poink to be
considered as a function &f(which may prove difficult forstudents who
conceive of functions purely in terms dbrmulae), the fundamental
theorem of calculus says tha&{(x)=f(x). Visually the additional areander
the curve fromx to x+h is A(x+h)-A(x) (figure 17).
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Figure 17: The area under a graph

Here there is onlyone strip to deal with and it may be monasually
evident that, under appropriate conditionshad), so

A(x+h) = A(x)
h
One insight is that a continuous graphlls flat” when thevertical scale is

kept constant and the horizontal is stretched, whilst looking though a fixed
size viewing rectangle (figure 18; Tall 1986; 1991).

Fixd)=sinx
from x=.999 to 1.881

- f(x)

8.9995 1.8885

— ]

Figure 18: Horizontal stretching of the sine graph

Here the area from to x+h is seen to be approximately a rectangle height
f(x), width h and, as tends to zero, the approximation may be imagined to
‘get better’, so that A(x+h)-A(x))/h more closely approximate$(x), as
required. Again there are clear cognitive obstacles, for instance in trying to
imagine how an approximation becomes an equality in the limit.

The ‘pulling flat’ property can be seen to be equivalent to point-wise
continuity by imagining the pixel to represent a heiffiRjze, then, if it
pulls flat in the window, there must existd20 such that picture of the
graph fromx—0 to x+9d lies within the pixel heighti(x)xe. That is,
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giveng>0, there is &>0 such that
x—0 <t <x+0 impliesf(x)— < f(t) < f(x)—¢.

There seems to bdittle published research on the formal beginnings of
analysis, however, my own personal experience suggests that above average
(as opposed to gifted) students can learn discuss the concepts
meaningfully based on the visuahagery, but that the translation to the
formal proof proves difficult. First the student usually imagines the
definition to describean existing objectrather than define the object by
deducing its properties (Siefpska 1992), thus finding it strange to ‘prove’
obvious properties thateemalready to be true. Then there duarther
difficulties because of the complex useafantifiers and the formality of

the deductions. The decision of most UK universities to abandon the
teaching of formalknalysis as &irst year university course Bvidence of

its huge cognitive difficulty.

5.2 Numerical Representations
Numerical representations can occur in a number of ways, including:

» using software which prints out tables of values, possiblyaat
of a ‘multiple-representation package’,

» using spreadsheets to build up tables of values (which may then
be represented graphically),

« student programming of numerical routines.

‘Tables of valuesare a favourite device of mathematics educavdngh
hardly figured in traditional calculus. They offer a simplemeric
representation to complement the visual graph and the synfbafiula.
However, there are two very distingsesfor tables of values. One is as a
genuine table of datdor instance,from experimental readings inraal-
world context. Here thechange’ from onedata reading to the next is
concerned with the discrete theory of finite differencather than the
limit theory of the calculus. The other use is to print ogelkected table of
evaluationsfrom a function given by a procedure or formula. Here new
tables can be generated as required to do such things as searahdoga
in sign and home in on a zero of the function.

Placing the data (eithefrom an experiment, or from a function
formula) into a spreadsheet gives opportunitiésr investigative
exploration (andsubsequengraphic interpretation). For instance, it is
possible to design a worksheet to draw a graph and its gradient (figure 19).
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=—————————— (radient worksheet
Al|B|[C D E F G H 1 J

I
Ll

1
2 |h=:01ix if(x) if{x+hf(f{x+h)-f(x))/h
3 SEU004 -02] -0981293212
4 -3 035 -05 -0.903695492
5 “EU06 -0.7 -0.769910364
6 -21-0.78] -0.8; -0.588255939 —X—1(x) — B — {f{x+h)-f(x))/h
7 S2UI081 08 -0370026609
8 Srlnagl o I 128790816
9 -2 ST 0120452566
10 S Cnas e 0362206791
11 -1 -084 -08] 0581440752
12 S1TC06R8] -06: 0764523543
13 1048 S04 0800071963
14 0i -0.25) -0.1: 0979658268
15 i] 0; 0.1 0998334766
16 030247, 034 0954935457
17 05 0479: 086 06857160548
18 080682 075 0696416451
19 170841 089 0497363753
20 13709497 098] 026735873851
21 1570997 170020786164
22 180884 0967 -0227107439
23 20909 086 -0460880602
24 230778, 071 -0665995441
25 250538 0627 -0829707723
26 280382 0209: -0041828797
27 30,141 0.04] -0995393456

e

Figure 19: Using a spreadsheet to calculate and display the graph and gradient of sinx

Spreadsheetare also particularly gootbr iterative work, forexample
using arecurrence formula tealculate the limit of aequence such as the
Newton-Raphson method of finding the zero of a differentiable function
(figure 20). Hunter et al. (1993) found this to be a more effective method
of showing the workings of the iteration Buccessivdines of code as
opposed to a more enigmatic use of recursion with a symbol manipulator.

=] Iterating Newton-Raphson =""—————J
A B [ D E F re

1

2

3 X X=F{x) /(%)

4 1.5 ) )

5 1.416666667 Iterating x=x-f(x)/f'(x)

[l 141666666 1.414215686

7 1.414213562 15—

8 1.414213562

9 1.414213562

10 1.414213562 1

11 1.414213562

12 1.414213562 0.5

13 1.414213562 :

14 1.414213562

15 1.414213562 0 +—————————————+—

16 1.414213562 123 45 6 78 9101112131415

17 1.414213562

18 1.414213562

19

20 3

LS [ [

Figure 20: Using a spreadsheet for Newton-Raphson approximations to a root of f(x)=x2—2

Spreadsheets can be usedother ways for imaginative display of data.
Abramovich (1995) used them to study the cauchy convergence of
sequences by calculatinge difference betwees, ands, in the (m, Nth
position, placing differensymbols according as to whetherwas bigger
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or lessthan a given positive. The resulting display allows the viewer to
select a value dl such that, whem, n exceed\N, then $,—s|<€.

Programming numerical procedures to carry omotathematical
processes can be of value in calcuks: instance, programming iterative
solutions of equations (‘'undoing’ function problems) ppogramming the
solutions of differential equationsundoing’ differentiation problems) or
programming the area under a curf&oing’ integration). Such
approaches enable the student to investigate ideas experimentally, for
example, toseewhat kind of errors occurwith different methods of
calculating areas (such as ‘first ordinatégst ordinate’, ‘mid-ordinate’,
‘trapezium rule’ and ‘Simpson’s rule’). However, this involves two separate
skills—programming and conceptualising mathematcmaicepts—and the
two may prove difficult to do at theame timefor students of average
ability and even above. Cowell and Prosser (19@port a mixture of
‘good and bad news’ in the use of True BASIC.

The studentslargely agreed that the computassignments weravell
integrated withthe rest of the course, and that learning thenecessary
programming was easy, but they disagreed that the computer enttagiced
interest in thecourse material, they disagretitht the computeshould be
dropped and they were divided on whetter computeassignments were
a valuable part of the course (Cowell & Prosser 1991, pp.152, 153)

Li and Tall (1993)report that programming functions in structured BBC
BASIC helped students conceive of functions as mental objects and to
conceptualise sequencasd series as functions, but did not help greatly in
thinking of the limit as a concepather than a process. On tlentrary,

the sequences programmed (including a sequrte&ing the value h2 if

n is prime, 13 if not prime and even, AY otherwise) sometimes took
considerable time to stabilise to 8 significant figures and so gave the
impression that the limit may not be reach8dme students sensttat an
increasing sequence bounded above might not be convergent. This led to an
open discussion on the completenpesperty which remained unresolved
because students wheere unsure if @equence&onverged were unwilling

to accept that it could be deemed to be convergent merely by asserting a
‘completeness axiom’. These studemtsre ‘capable’ rather than ‘gifted’

and when they did an analysis course two years later with arletiterer,

only a small minority couldshakeoff inappropriateimages to use the
definitions of limits to prove that a functiorwas continuous or
differentiable ‘from first principles’ (Pinto & Gray 1995).

5.3 Conceptual Programming

Programming incalculus courses often involves numericborithms,
sometimes in the hope that this will give supportater conceptualdeas,
some of which prove not to work nearly easily as might be hoped. On
the other hand, the computer language ISETL (Interactive SET Language)
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iIs designed specifically tomirror mathematical ideas, such as the
definitions of sets, with functions aets ofordered pairs omprocesses of
assignment, whose names can be used as the inptlieio functions. Thus
it is possible to defined a functidd which takes a functioh as input and
return a functionD(f) which is a numerical derivative &f The following
code in ISETL produces the numerical derivative fifr h=0.0001:

D : = func(f);
return func(x);
return((f(x+0.0001)-f(x))/0.0001;
end;
end;

wherereturn func(x) denotes thaD returns a function ok using the
given formula. For any function whatever, such as the exponential function
exp, then D(exp) will be another function. Ifx is a number,then
D(exp)(x) is a number, namely the value of the numerical derivative of
exp calculated ax.

A mid-ordinate approximation to the Riemann integral framo b with
n steps can be programmed as:

RiemLeft : = func(f,a,b,n);

X = [a + ((b=a)/n)*i : i in [0..n]];

return %+[f(x(i—1))*(x((i)—x(i-1)) : i1 in [1..n]];
end;

(where the symbol%+ standsfor the summation symbol¥). The
procedurecomputes the equally spaced set of vaki@s), ..., x(n), then
calculates the Rieman sum of the areas of strips wid{hn)—x(i—1),
height f(x(i—1)) asi varies from1 to n.

The approximate integral operator can then be defined for any function
f as

Int : = func(f,a);
return func(x);
return( RiemLeft(f,a,x,25);
end;
end;

(To improve accuracy, instead of using 2teps in thefunction, it is
possible to repeat the computation an increasing number of strips and
only return the value when it has stabilised to appropriate accuracy.)
The studentsre encouraged to combife andInt, such adnt(D(f),a)
andD(Int(f,a)) in various activities in an effort to help them construct the
relationship between differentiation and integration (Dubinsky &
Schwingendorf 1991). This method still inhabits the world of numerical
approximations and the consequent inherent cognitive complications
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involving numbers and limits, but it has the advantage of constructive
activities designed to mirror the corresponding mathematical ideas.

5.4 Computer Algebra Systems

Computer algebraystems(or symbol manipulators) are now beinged
more extensively in teaching calculusrom coursesbased onsoftware
notebooks that include symbol manipulation and graph-drawing in
Mathematica(Brown, Porta & Uhl 1990; 1991a), to laboratory workshops
added to standard courses Nhaple (e.g. Muller 1991), andesearch
projects (e.g. Heid 1988; Palmiter 1991).

Brown, Porta and Uhl; (1990; 1991b) repsdphisticated studenmisage
of symbolic facilities provided in notebooks Mathematica with students
passing the symbol manipulation to the software whilst concentrating on
other aspects othe problem. Muller (1991) reports a project in which a
first course (1988)was received enthusiastically by volunteers and was
followed by two successiveeompulsory courses (1989; 1990) which still
showed some gains, though at a more realistic level. An important factor in
this projectwas a significantreduction in student withdrawal rates and
failure rates.

Heid (1988) used graphical software to illustrate concepts aneatthe
computer algebraystemMuMathto carry outsymbol manipulation, only
practising paper and pencil skills in the last thweseks of afifteen week
course. The studentserformed better omonceptual questions andere
statistically not significantly differenfrom control students doing dull
fifteen week course on standard techniques.

Palmiter (1991)used the symbolic softwatdACSYMA to teach one
cohort of students dirst course in integration for fiveveeks whilst a
parallel cohort studied a traditional courkm a full ten weeks. The
MACSYMA students used the software darry out routinecomputations
whilst the traditional students were taught the techniques. Both groups took
a conceptual examination and a computational examination at the end. The
conceptual examination was taken by botinoups under identical
conditions, the experimental students were alloweds®MACSYMA in
the computational examination but had only one hour whilstctirrol
students were given two hours. The ressliswed in conceptual questions
the experimental students achieving an average of 89.8% (+15.9) compared
with the average traditional course score of 72.0% (x20.4). and on
computational questions an average of 90.0223.2) compared with
69.6% (+24.2).

This gives clear indications that a ‘student plus manipulation tool’ can be
more successful in conceptual and computational tasks than a student
working in a traditional manner.
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However, other experiments do noalways show significant
improvements in performance, particularly in paper apencil
manipulative skills. Comparing students in a compudoratory using
Derive and a traditional course, Coulombe dWidthews(1995) found no
significant differences in knowledge, paper and pencil manipulation,
conceptual understanding, or higherder thinking skills, although it
produced similar levels gberformance whilst givingstudents additional
familiarity with computer technology.

The use of software with graphical facilities and symbol-manipulation
changes students conceptions of the calculustaeid abilities tocarry out
the related skills. For instance, having graphs drawn by technalogy
not involve explicitly calculating and plotting function values. Hunter et al.
(1993) found that a third of thstudents in onelasscould answer the
following question before the course, but not after:

‘What can you say aboutif u=v+3, andv=17?’

During the course they had no practice in substitutradues into
expressions and the skdeems to haveeceded until it is not used in the
post-test.

By the same token, Monaghan et al. (1994) found that stouents
using a computer algebra system to carry thatprocess of differentiation
responded to a request for explanation of differentiation by describing
the sequence of key-strokes that were necessary to get the result. It appears
that some students may simply replace @mnecedure whichhas little
conceptual meaning with another.

Changes inlearning arecaused by avariety of factors of which the
technology is only one. Coston (1995) studied the effects on grades of
cooperative learning, with and without thise of technology. The results
showed no significant differences using technology alone but cooperative
learning plus technology produced a significant improvement in attitude
whilst cooperative learning by itself produced a highly significant
Improvement in problem solving.

In a technological age whegrocery bills are totalled at theheckout
by computer technology and computers ased throughoubusiness and
commerce, the need to test a student inateence of the technology may
become increasingly questioned. Yet while some ‘conceptually oriented’
courses have shown students able to respond well to conceptual questions,
able toperform manipulations better using the technology aedforming
no worse at paper and pencil skills with a little practice, khewledge
being obtained is certainly different and is likely to have new strengths and
also hidden flaws.
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6. THE FUTURE FOR FUNCTIONS AND CALCULUS

In the mid-1980s, calculus wasder attackfrom discretemathematics,
which seemed to some to be the mathematics otdheputer and so the
mathematics of the future. At the time | wrote an article entitled ‘W(h)ither
calculus’, with an intended pun on the first word with or without its ‘h’, for
there weresuggestions that the calculus wowlither away and digTall
1987). Subsequent events have shown the revetsgeiCalculus is at the
forefront of curriculum reform in mathematics with its vigour renewed by
the advent of the computeMathematiciansre discovering theizest for
experiment and adventure and grassing ontheir enthusiasms tdheir
students. At the same time, the notion of function has been seereata
theoretical construct. The first wavesreform have stimulated theystem
and have been accompanied by clarion calls declaring the new dawn. The
time for evaluation and cool consideration hasived butshould not be
allowed to dampen the ardour which many of the reformers passed on

to their students.

Just as enthusiasms for the theory of ‘new mathematics’ in the 1960s had
to be tempered by the realities of the growth of knowledge in the
individual, so the fundamental nature of the function concept is beginning
to be seen in a more realistic light of cognitive development. It continues to
be viewed as a fundamental mathematical notion and pasnainentrole
in the curriculum, but the underlying cognitieenceptual difficulties are
beginning to be better understood, even if it is proving more problematic
to cater for them.

Calculus has broadened in its meanifigm traditional symbolic
techniques to a widescience of how things change, tfae at which they
change, and how their growth accumulates. Instead of being only an
intellectual challengdor the elite, it has widened its appeal to allow
experimental exploration and a quést meaning without losing sight of
the long-term needor meaningful proof. Itexists in avariety of forms
that allow students to harness the power of computer softwarseeio
insight from a variety of viewpoints.

The discovery of the calculusver three centuries agwas one of the
most significant events in the evolution of civilization. The momentous
changesoccurring with the growth of information technology in tleest
decade show calculus still playing its central role.
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