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1. INTRODUCTION

One purpose of the function is to represent how things change. With this
meaning it is natural to move on to consider the calculus concepts of the
rate of change (differentiation) and cumulative growth (integration)
together with the remarkable fundamental theorem of calculus that tells us
that differentiation and integration are essentially inverse processes.

The calculus traditionally focuses on mastery of symbolic methods for
differentiation and integration and applying these to solve a range of
problems. It is both a climax of school mathematics and a gateway to
further theoretical developments. This position between elementary and
advanced mathematics allows it to be approached in different ways, with a
consequent variety of curricula. In some countries calculus is studied in an
intuitive form in school, with the limit concept introduced dynamically in
terms of a variable quantity ‘getting close to’ a fixed limiting value. In
others the focus is turned towards the formal theory of mathematical
analysis starting from a formal ε–δ (or equivalent) definition of the limit.
Other curricula occupy a midway position, building on both intuitive ideas
but also highlighting formal definitions.

Mamona-Downs (1990) compared the two extremes—the intuitive form
in British schools and the logical form in Greek schools and confirmed
previous research that the intuitive approach gives side-effects which clash
with the formal definition in ways which will be discussed later in this
chapter, whilst showing that the formal approach emphasises the logic but
gives less conceptual insight.

Traditional American calculus texts occupy the middle ground, with
students usually meeting the calculus for the first time at college where it is
considered appropriate to include aspects of the formal theory. Here the
vast financial rewards available when a text is widely adopted has the effect
that no book leaves out anything important contained in a competitor, so
calculus texts all grow to enormous size. Most traditional calculus books
include all the topics an instructor might wish to teach, with a large
number of worked examples and exercises to satisfy the most anxious
student. Even so, the heavy diet of procedural exercises produced failure
rates between 30% and 50% (Anderson & Loftsgaarden 1987; Peterson
1987). Despite isolated attempts at trying something really new, such as
Keisler’s (1976) pioneering work to introduce an intuitive infinitesimal
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approach, the American system began to reach a position of gridlock. In
the fateful year 1984, E. E. Moise wrote:

For the overwhelming majority of students, the calculus is not a body of
knowledge, but a repertoire of imitative behaviour patterns.

In that same Orwellian year, the American Mathematical Monthly carried a
full page advertisement for the computer algebra system MACSYMA
which

… can simplify, factor or expand expressions, solve equations analytically
or numerically, differentiate, compute definite and indefinite integrals,
expand functions in Taylor or Laurent series.

Suddenly the whole rationale of the calculus became questioned—if
computer software can do all the things that a student is required to do on a
calculus examination, why do they need to learn to do it anyway?

Although mainframe developments of such symbol-manipulators
occurred almost exclusively in the USA and Canada, the late 1970s and
early 1980s saw personal computers being launched in educational projects
all over the world. School curriculum builders were beginning to
investigate the use of computers in mathematics in general and calculus in
particular. At first often all that was available was a computer and a
programming language such as BASIC in which developers began to write
numerical algorithms, encouraging students to do the same. Then in the
early 1980s high resolution graphics arrived and graphical software for
calculus began being written in profusion.

In 1985 the first real practical symbol manipulator arrived on a
personal computer in the form of MuMath, to be superseded by its later,
more user-friendly re-incarnation, Derive (Stoutemyer et al. 1985; 1988).

With the proliferation of new computer approaches to the calculus and
the perceived log-jam of traditional calculus, the ‘Calculus Reform
Movement’ began in the USA. The quest for reform to A Lean and Lively
Calculus (Douglas 1986) was answered by a rallying call in Calculus for
the New Century: A Pump, Not a Filter (Steen 1988) to make calculus a
genuine driving force for learning instead of a filter which weeded out
poor students. Subsequent developments were all stimulated in varying
degrees by the use of new technology.

The technological revolution brought with it new market-driven factors,
with large companies cooperating with educators to develop new tools. The
costs of delivering the calculus curriculum were escalating and new
assessment methods were being considered to take account that students
now solved many calculus problems using technological supports.

The most economically viable approaches in recent times use graphic
calculators with graphic, numeric and subsequently symbolic facilities.
Though they lack the full facilities of a desk-top computer, they have the
great advantage of portability, allowing the student to use them anywhere
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and at any time. Meanwhile, computer algebra systems, previously only
available on mainframes, migrated to personal computers, leading  to
sofware such Mathematica, Maple, Reduce, Theorist and MathCad. In
varying degrees these offer environments for presenting curriculum
material, writing reports, performing calculations, manipulating symbols,
drawing a range of graphs, and programming new extensions at the desire
of the user. Many practising mathematicians found them to be a creative
paradise for new experimental research and in turn they offered a wide
range of possibilities in teaching and learning calculus.

At the same time the motivating factors behind the reforms were many
and varied. They included altruistic desires to make calculus more
understandable for a wider range of students, commercial desires to
produce saleable products, practical considerations of what actually needed
to be taught, reflection on the type of mathematics that is suitable in a
technological age, and a growing aspiration to research the learning
process to understand how individuals conceptualise calculus concepts.

2. COGNITIVE CONSIDERATIONS

2.1 The Role of Learning Theories in the Calculus Reform

A characteristic of recent developments has been a focus of attention not
only on the mathematics to be taught, but also the mental processes by
which it is conceived and learnt (e.g. Dubinsky 1992). Kaput (1992; 1993)
and Nemirovsky (1993) focus on the way that younger children have
intuitive sense of concepts such as distance, velocity, acceleration, which
can be utilised in conjunction with computer simulations to study aspects of
calculus at a far earlier age. Moreover, the simulations involved, such as
driving a car along a highway—linked to numeric and graphic displays of
distance and velocity against time—allow a study of change which is not
limited to functions given by standard formulae (figure 1).

This widens the representations available in the calculus to include:

• enactive representations with human actions giving a sense of
change, speed and acceleration,

• numeric and symbolic representations that can be manipulated
by hand or by computer, including the possibility of
programming by the student,

 • visual representations that can be produced roughly by hand or
more accurately and dynamically on computers,

and

• formal representations in analysis that depend on formal
definitions and proof.
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A diagrammatic representation of the growth of representations and the
building of the concepts of calculus may be formulated as in figure 2.

Enactive

Symbolic

Numeric

Formal

Elementary calculus

Mathematical analysis

Visual

Figure 2: Representations in calculus/analysis

This diagram carries an explicit theoretical viewpoint—that enactive
experiences provide an intuitive basis for elementary calculus built with
numeric, symbolic and visual representations, but that mathematical
analysis requires a higher level of formal representation.

The cognitive growth by which this occurs requires significant
constructions and re-constructions of knowledge. For instance, enactive
sensations of moving objects may give a sense that ‘continuous change’
implies the existence of a ‘rate of change’, suggesting an equivalence

Figure 1: MathCars: simulating relationships between time, distance and velocity
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between the theoretically different formal concepts of continuity and
differentiability. More significantly, the formal definitions and theorems of
analysis require subtly different cognitive qualities which are almost
certainly inappropriate in a first course in calculus. This suggests a
fundamental fault-line in ‘calculus’ courses which attempt to build on
formal definitions and theorems from the beginning.

The way in which numeric and symbolic representations develop
involves an interesting form of cognitive growth. There are recurring
cycles of activity in which a process, such as counting, becomes a concept,
such as number. Other instances include the process of addition becoming
the concept of sum, the process of equal sharing becoming the concept of
fraction, the process of calculating ratio becoming the concept of rate, and
the limiting process becoming the concept of limit.

Various authors, including Piaget (1972), Dubinsky (1991) and Sfard
(1991), theorise that the growth of human knowledge starts with actions
(first on the environment), some of which become repeatable processes and
are later conceived as objects in their own right to be manipulated on a
higher level by further mental processes. Gray and Tall (1994) name the
combination of process and concept produced by the process which may
both be evoked by the same symbol, a procept. This proves to be
particularly apposite in the study of the calculus because function,
derivative, integral and the fundamental limit notion are all examples of
procepts. Indeed, the theory of functions and calculus can be summarised in
outline as the study of the ‘doing’ and ‘undoing’ of the processes involved
(figure 3).

Procept

Change: doing calculating values

FUNCTION undoing solving equations

Rate of change: doing differentiation

DERIVATIVE undoing anti differentiation,
solving differential equations

Cumulative growth: doing integration

INTEGRAL undoing fundamental theorem of calculus

Figure 3: Three procepts in functions and calculus

The various representations each have their own characteristics that offer
potential cognitive advantages and disadvantages for representing the
underlying limit procept and for ‘doing’ and ‘undoing’ each of the procepts
of function, derivative and integral. These include using visual ideas for
conceptual insight, numerical computations for practical experience,
symbolic manipulations performed by the computer to support those with
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limited facility in algebraic manipulation, and programming of various
kinds to encourage the student to construct procedures on the computer to
represent calculus concepts.

Modern calculus reforms (both within the USA and elsewhere) seek to
use these representations to make the subject more practical and
meaningful. Cottrill, Dubinsky et al. (1995) use the principle that actions
become repeatable processes which are encapsulated as objects and then
related in a wider schema, in a theoretical development given the acronym
APOS. This is realised by programming activities which place visualisation
at the end of the line as a visual representation of the function constructed
through encapsulating a programming process as an object. Tall and Sheath
(1983) see the visualisation of the gradient of the graph as an early stage in
the calculus to be linked to numeric and symbolic representations. Here the
visualisations are focused mainly on graphical representations of the
function as a graph. Gleason et al. (1990) produce a course based as much
on mathematical belief as on cognitive growth, in which:

One of the guiding principles is the ‘Rule of Three,’ which says that
wherever possible topics should be taught graphically and numerically, as
well as analytically. The aim is to produce a course where the three points of
view are balanced, and where students see each major idea from several
angles. (Hughes Hallett 1991, p.121)

There is therefore a spectrum of possible approaches to the calculus, from
real-world calculus in which intuitions can be built enactively using visuo-
spatial representations, through the numeric, symbolic and graphic
representations in elementary calculus and on to the formal definition-
theorem-proof-illustration approach of analysis which is as much
concerned with existence of solutions as with their actual construction.
(Figure 4.)

Faced with such an array of possible approaches, certain broad differences
should first be noted. Traditional calculus used to be a mixture of
manipulative symbolism and qualitative visualisation with possible
deductive elements from analysis. The computer allows not only a numeric
quantitative approach to carry out the many calculations required in, say,
computing the approximate area under a curve, it also allows graphical
representations to be drawn at the will of the user, offering a possible
conceptual approach based on visualisation. In turn this broadens the
approach to the calculus by allowing functions to be defined by data or
numeric procedures, with solutions of differential equations given in
numeric and visual form where there may be no solutions in terms of
standard formulae.

Underlying all these approaches to the calculus, however, is the limit
concept which research shows to have deeply embedded cognitive
difficulties (summarised in Cornu 1992). The enactive real-world approach
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deals with this at a practical approximation level. The graphical approach
allows the limit notion to be handled implicitly, for instance, by
magnifying the graph to see it looking ‘locally straight’ so that the gradient
required is that of the visibly straight graph. This helps the move into
elementary calculus without stumbling over the limit concept, but the
deficiency may need to be addressed at a later stage when further cognitive
reconstruction may prove necessary to cope with formal concepts.

At the formal end of the spectrum there is a wide conceptual gulf
between practical calculations or symbol manipulations in calculus and the
theoretical proof of existence theorems in analysis. I conjecture that this is
so wide that it causes a severe schism in courses (particularly in ‘college
calculus’) which attempt to bridge the gap between calculus and analysis
during the first encounter with the subject. This is implicitly recognised by

Representations

Visuo-
spatial

Numeric Symbol ic Graphic Formal

Procepts

Enactive

observing
experiencing

Quantitative

estimating
approximating

Manipulative

manipulating
limiting

Qualitative

visualizing
conceptualizing

Deductive

defining
deducing

Change:

FUNCTION

doing distance,
velocity etc.

changing
with time

numerical
values

algebraic
symbols

graphs set-theoretic
definition

undoing solving
problems

numerical
solutions

of equations

solving
equations

symbolically

visual solutions
 where graphs

cross

intermediate
value & inverse

function
theorems

Rate of
change:

doing velocity from
time-distance

graph

numerical
gradient

symbolic
derivative

visual steepnessformal derivative

DERIVATIVE undoing solving
problems e.g.

finding
distance

from velocity

numerical
solutions of
differential
equations

antiderivative
—symbolic
solutions of
differential
equations

visualize graph
of given
gradient

antiderivative—
existence of
solutions of
differential
equations

Cumulative
growth:
INTEGRAL

doing distance from
time-velocity

graph

numerical area symbolic
integral

as limit of
sum

area under graphformal Riemann
integral

undoing computing
velocity from

distance

know
area—find
numerical
function

Symbolic
Fundamental

Theorem

know area
– find graph  

Formal
Fundamental

Theorem

REAL-
WORLD

CALCULUS
THEORETICAL CALCULUS ANALYSIS

Figure 4: A spectrum of representations in functions and the calculus
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reforms which include only those topics which are found to be essential.
For instance, ProjectCalc at Duke University (Smith & Moore 1991) found
that this meant that ‘numerical algebra was in, but the mean value theorem
was out’ (as quoted in Artigue & Ervynck 1993, p.92). It goes without
saying that the mean value theorem inhabits the realms of existence
theorems in analysis and sits uncomfortably in the computations of
elementary calculus. This implicitly underlines the difficult chasm between
elementary calculus and formal analysis.

2.2 Students

Students taking calculus courses cover a wide range of background
knowledge, ability and motivation. This complicates not only the design of
the curriculum, but also the interpretation of research evaluating its
effectiveness. The problem in the calculus is highlighted by the fact that
some students appear to make connections and others do not. Thus, a
course which is designed to give greater insight by making connections
may be a positive help for some and a failure for others.

Krutetskii (1976, p.178) performed a wide range of studies on 192
children selected by their teachers as ‘very capable’ (or ‘mathematically
gifted’), ‘capable’, ‘average’ and ‘incapable’. He found that the gifted
children remembered general strategies rather than detail, curtailed their
solutions to focus on essentials and were able to provide alternative
solutions. Average children remembered more specific detail, shortened
their solutions only after practice involving several of the same type, and
generally offered only a single solution to a problem. Incapable children
remembered only incidental, often irrelevant detail, had lengthy solutions,
often with errors, repetitions and redundancies, and were unable to begin
to think of alternatives.

He also found that ‘giftedness’ was manifested in different ways. Of his
34 ‘gifted’ children, 6 were classified as ‘analytic’, 5 as ‘geometric’ and 23
as ‘harmonic’, exhibiting a spectrum of relative preferences for verbal-
logical and visual thinking.

Students taking calculus are usually ‘capable’ or ‘gifted’, but with wider
access, they include many of ‘average’ ability and below. Given the wide
possible spectrum of approaches by such a range of students, it becomes
evident that methods that may be essential to some may be inappropriate
for others. For example, the repetition of regular problems which seems
necessary for curtailment of solution processes for the average student may
be less necessary for the gifted, whilst causing inflexible procedural
orientations in others. Meanwhile, the flexibility in switching from one
representation to another, which seems a characteristic of gifted ‘harmonic’
thinkers, may prove difficult for the average student. A growing number
of research studies report students having difficulties relating
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representations, and others show some students moving from one
representation to another but failing to move flexibly back and forth.

In considering research into the calculus it is well to have such a
spectrum of student possibilities in mind, for research on one group of
students in one context may well turn up different characteristics from
another situation without the two necessarily contradicting each other.
There is also the chicken-and-egg problem: are students gifted because they
‘have’ certain abilities, or do they become gifted because they ‘develop’
these abilities? Such questions dig deep into theoretical and philosophical
issues which have their roots in the development of students long before
they begin to study the calculus. We now turn our attention to curriculum
issues, cognisant of the differences that may occur in the students for whom
the curriculum is being designed.

3. FUNCTIONS

 3.1 The Function Concept

The notion of function came to prominence first in the writings of Leibniz
in the late seventeenth century where he used the term functio to describe a
variable y whose value depended on a changing variable x. Initially it was
conceived as having an explicit formula such as y=x2 and, in the next
century, this was denoted by the more general formulation y=f(x). From
the beginning a function in the calculus was linked to its graph G—the set
of points (x, f(x)) in the cartesian plane.

In the twentieth century, the visual idea of the graph f:A→B became
considered as a set of ordered pairs {(x, y) ∈  A×B | x ∈  A, y=f(x)}, giving
the possibility of a set-theoretic definition. A function may now be any set
G of ordered pairs G = {( x, y) ∈  A×B | x ∈  A, y ∈  B}, provided only
that for every x ∈  A there is a y ∈  B such that (x, y) ∈  G and that this y is
unique (if (x, y1), (x, y2) ∈  G then y1 = y2).

Such a development is not without its conceptual difficulties and
cognitive struggles. Sierpin´ ska (1992) described how the subtle changes in
meaning were accompanied by difficult conceptual obstacles that needed to
be overcome. For instance, an individual whose experience of functions in
terms of formulae and computation will find it difficult to accept a
definition which does not involve these attributes. Sfard (1992) indicated
how the operational view of mathematics in terms of processes to be
carried out seems inevitably to precede the structural view using objects
and formal definitions, both in history and cognitive development.

Although the set theoretic definition proved highly successful in the
systematic formulation of mathematics, it was less successful when adopted
for teaching purposes in the ‘New Mathematics’ curricula of the 1960s.
Although students were told that a function had a domain D, a range R and
a set of ordered pairs (x, y) with x∈ D, y∈ R, what they experienced was a
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formula such as y=x2 or f(x)=sinx+cosx. Surveying the function concept in
Malaysia, Bakar (1991) found the set-theoretic concept was in principle at
the root of the curriculum in every year from the age of 11 onwards. But
in practice the functions were first linear, then quadratic, then polynomial
and later rational, trigonometric, exponential or logarithmic. In service
courses where the formal definition has less emphasis, memories of it
decline markedly in engineers and others studying mathematics by the last
year of university.

It is valuable to distinguish carefully between the formal mathematical
concept specified by a concept definition and the wider ‘concept image’
including ‘all the mental pictures and associated properties and processes’
related to the concept in the mind of the individual (Vinner & Hershkowitz
1980; Tall & Vinner 1981; Dreyfus & Vinner 1982). Vinner (1983) found
that, even students who could give a correct set-theoretic definition of a
function were likely to use their intuitive images in answering questions
about functions. Around 40% of the high school students he tested thought
that the graph of a function should have other properties, such as being
regular, persistent, reasonably increasing, etc., whilst many did not think
the graph in figure 5 is a function.

Figure 5: A unfamiliar graph without an obvious formula

He found many students thinking that a function should be given by a single
formula, or, if two rules were given their domains should be half lines or
intervals.

Markovits et al. (1986; 1988) showed that if students were asked how
many functions could be drawn through given points, then two points A, B
often evoked only a single straight line through them because ‘two points
can be connected by only one straight line’, whilst the second graph in
figure 6 may be considered not to allow a function at all because there
seems to be two sets of points on two distinct lines.
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x x

y y
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B B
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A E

C

Figure 6: How many graphs can you draw which pass through these points?

Barnes (1988) found that a majority of grade 11 school students and
university students did not regard y=4 as a function, because it does not
depend on x, but that x2+y2=1 is a function because it is familiar. Bakar
and Tall (1992), Ferrini-Mundy and Graham (1994) and others all found
that students had various specific conceptions of a function: that it was
given by a formula, that if y was a function of x, it must include x in the
formula, that its graph was expected to have a recognisable shape (e.g.
polynomial, trigonometric or exponential), and that it was to have certain
‘continuous’ properties. These had idiosyncratic meanings, for instance,
‘continuous’ might mean that the graph ‘continues’, so that a quadrant of a
circle y=√(1–x2) (0≤x≤1) would not be allowable for some students
because this graph should be ‘continued’ to give a fuller curve (figure 7).

Such concept imagery is of course not confined to students. It clearly
occurs in all areas of human endeavour, including the historical
development of mathematics where individuals have concept images related
to their experience in the prevailing culture. Successive generations do not
replace all old elements with new, instead they retain aspects that prove
useful and graft on more powerful aspects. So it is that mathematicians and
teachers retain dynamic ideas of changing variables alongside formal
notions of ordered pairs in a potent but perplexing composite of ideas to
pass on to the next generation.

The graph y=√(1–x2)

may be “continued”
round the circle

(for 0 ≤   ≤1)x

Figure 7: ‘Continuing’ the graph of a function



Functions & Calculus 12

3.2 Computer approaches to functions

The computer provides a new environment to explore the function concept.
Cuoco (1994) found that an approach to functions through programming in
Logo gave significantly different insights from a traditional approach.
Students using paper and pencil drawings of graphs saw them as geometric
shapes rather than a process of inputting x and outputting y. On the other
hand, those programming in Logo not only saw the relationship in input-
output terms, they were able to think of a function as an object in its own
right. Similar conclusions have been found in structured BASIC which
incorporates procedural functions (Li & Tall 1993) and in ISETL
(Breidenbach et al. 1992; Cuoco 1994). ISETL (Interactive SET Language)
has a further advantage in that the name for a function can be used as an
input for another function, hence enhancing its object status.

This shows that the traditional notion of a function represented by a
formula and its graph is cognitively different from the notion of function
as defined set-theoretically and different again from that conceived in
terms of process–object encapsulation.

When software is used to represent function concepts, this is usually
done graphically, sometimes with a facility to represent them in tabular
form. The way in which the graph is often drawn as a curve may cause
students to see it as a whole object. Some programs, such as
RandomGrapher (Goldenberg et al. 1992) plot random function values to
build the graph as a collection of points (figure 8). Although this gives a set
of points of the form (x, f(x)), further activities may be necessary to see
the function process assigning to each value of x the value y=f(x).  

Figure 8: Successive pictures building up a random plot as a collection of points

Other programs link with alternative forms of representation, for instance,
Function Probe (Confrey 1992) allows graphs to be manipulated
enactively, using the mouse to transform graphs by translating, stretching,
reflecting. Such an approach treats the graph as a single object to be
transformed.
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Figure 9 shows a problem to transform the top left parabola to give the
large inverted parabola. The first move has been made, translating the
upper left parabola to the right.

Stretch

Reflect

Translate

Here the parabola 
on the top left has 
been translated to 

the right

Figure 9: Starting a sequence of moves to translate the top left parabola to the larger inverted parabola

Such software highlights the problems in interpreting the meaning of
translations, for instance a horizontal shift to the right by a constant +c
changes the graph y=f(x) to y=f(x–c) causes great difficulties for students
(Dreyfus & Eisenberg 1987). This is not only a problem linking enactive
and symbolic, but also symptomatic of subtle underlying difficulties often
hidden in the mathematical theory (Smith & Confrey 1994). (In this case,
shifting the graph to the right is equivalent to shifting the domain to the
left, and the change in the function symbolism corresponds to the latter
rather than the former.)

3.3 Graphic Calculators

Graphic calculators provide a combination of calculator, numeric
programming language and graphical output. More recent models provide
a growing number of other facilities, such as symbol manipulation,
spreadsheet facilities, data handling. These little tools can be carried around
in and out of the classroom and their very availability has caused them to
be included in a wide variety of courses.

Demana and Waits saw their value as tools and immediately began
constructing courses to use them at Ohio State University. Meanwhile, in
the UK, the School Mathematics Project incorporated graphic calculators
into their calculus course because they were in the hands of the students
who were already making use of the facilities.

There have been powerful claims for multiple representations:
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the feature of computers that has recently caused most excitement amongst
mathematics educators is the ease of moving from one form of information
representation (numerical, graphic and symbolic) to another as the user
searches for conceptual understanding and problem solutions.
 (Fey 1989, p.255)

But is the power being used to its full potential? Keller and Hirsch (1994)
found that students often showed a strong preference for one particular
representation (which they quantified in terms of a statistically significant
frequency of selection from tables, graphs and equations, using a χ2 test
(p<0.05)). (Figure 10.)
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Figure 10: Significant sttudent preferences for specific representations

The students were given a free choice of which course to follow, those
choosing the trational route including far more students preferring
symbolic representations and both showing a significant number of students
preferring to use tables. After the courses, none in either group preferred
tables, with both groups showing increased preferences for graphs and
symbols, and the traditional course becoming even more symbolically
biased.

It was also noted that when the problems were purely mathematical with
no specific application, more students preferred to use symbols, whilst in
problems involving a specific application context, preferences for symbols
decreased and graphs were more likely to be selected.

Hart (1991) also reported that students using supercalculators showed
definite preferences for certain representations:

• Students confident in symbol manipulation skills tend to use
alternate representations only when unsuccessful at finding an
answer symbolically,

• students who do not have access to a graphing calculator do not
typically choose to use the graphical representation even when it
is provided,
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• traditional students were more likely to rely on a symbolic
representation to solve problems without considering any other
possibilities.

(Hart 1991, quoted in Beckmann 1993, p.110)

Furthermore, students who were not confident in symbol manipulation
were more likely to use their calculator. When a solution was found, it was
rarely checked by using other representations, even when it was wrong.
Nevertheless, experimental students showed greater conceptual
understanding than traditional students and there was ample evidence that
success on the course was not correlated with previous grades so that

students who might be termed as ‘symbolically illiterate’; can be successful
in learning and understanding calculus through the use of graphic and
numeric tools. (Beckmann 1993, p.112).

The tendency for many students to prefer certain representations can
produce unforeseen results. For instance, Caldwell (1995) expected
students to find the roots and asymptotes of the rational function

f (x) = x(x − 4)
(x + 2)(x − 2)

by algebraic means, only to be given a substantial number of approximate
solutions such as 0.01 and 3.98 using a graphing calculator. Here a link to a
graphical representation was made, without relating back to the precision
of the algebra.

Boers and Jones (1993) report students use of a graphic calculator to
draw a graph of

f (x) = x2 + 2x − 3

2x2 + 3x − 5

which has a removable discontinuity at x=1. They found that more than
80% of the students had difficulty reconciling the graph with the algebraic
information, for example, drawing an asymptote suggested by the zero in
the denominator, despite the graphic evidence of the calculator (figure 11).

Figure 11: Graphic calculator display and student graph
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Some experiments show significant changes when using graphic calculators
over a succession of courses. Quesada (1994) introduced graphics
calculators into a pre-calculus course where previously an average of 60%
of the students finished with a grade D or F, or withdrew from the course.
They ‘did not have a clear understanding of the basic families of functions’,
‘could not read basic graphs’ and ‘had not developed basic study habits’. To
encourage the use of algebraic skills, there was a policy that no marks were
given for a graphic or decimal solution if an algebraic solution was
possible. Over three courses, the number of experimental students
obtaining D, F, or withdrawing was 43% compared with 69% in the
control group. Of the totals taking the final examination, 53% of the
experimental students obtained A or B compared with 19% of the control
students. When the students moved on to calculus courses, the experimental
students again obtained substantially larger percentages of grades A and B
in Calculus I and II, though the position was marginally reversed in
Calculus III (Quesada 1995).

In these various research studies we see the use of technology giving
alternative ways of approaching the function concept with accompanying
advantages and disadvantages. Used imaginatively under student control
there is evidence of greater student involvement and less likelihood of
withdrawal, but there is also evidence of idiosyncratic interpretation of the
computer’s representations. Whilst gifted students may have the ability to
interchange between representations and focus on the most relevant
information, capable students may also benefit significantly from the power
of the software, yet use the available facilities in less flexible ways.

4. LIMITS AND REAL NUMBERS

4.1 Cognitive difficulties with the limit concept

At the gateway to the calculus stands the limit concept which must be
handled either explicitly or implicitly. Explicitly it is usually treated in
terms of considering expressions such as

lim
h→0

(x + h)2 − x2

h
.

In ‘intuitive’ terms this may be considered by varying h dynamically to see
what happens as h→0. For h≠0 it simplifies to 2x+h, and as h ‘tends to
zero’, this expression visibly becomes 2x. However, this has various hidden
problems. The language used, with terms like ‘tends to’ or ‘approaches’ or
‘has a limit ’ all suggest that the expression gets close to the limit, but can
not equal it. (Schwarzenberger & Tall 1978). The fact that the
simplification can only be done for h≠0, yet to obtain the limit one puts
h=0 also contributes to the conflict. Students invariably see the limit as a
process and find it difficult to encapsulate as a limit concept. Instead of
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conceiving of the limit as a specific value to be found, students may focus
on the idea of a tiny quantity h that is ‘as small as one desires’,
encapsulating this idea as a kind of ‘cognitive infinitesimal’ (Cornu 1992).

Williams (1991) found that a student might use different conceptions of
limit selected according to the particular context being considered, without
being concerned about possible overall consistencies:

And I thought about all the definitions that we deal with, and I think they’re
all right—they’re all correct in a way and they’re all incorrect in a way
because they can only apply to a certain number of functions, while others
apply to other functions, but it’s like talking about infinity or God, you
know. Our mind is only so limited that you don’t know the real answer, but
part of it. (Williams 1991, p.232)

When ten students were selected with concept images of a limit at variance
with the definition (such as ‘gets close to, but does not reach’), a series of
five interviews with each in which the conflicts were confronted failed to
produce any significant change:

The data of this study confirm students’ procedural, dynamic view of limit,
that is, as an idealization of evaluating the function at points successively
closer to a point of interest. The data also suggest that there are numerous
idiosyncratic variations on this theme, some of them extremely difficult to
dislodge. (Williams 1991, p.235)

4.2 Procedural consequences of conceptual difficulties

When faced with conceptual difficulties, the student must learn to cope. In
previous elementary mathematics, this coping involves learning
computational and manipulative skills to pass exams. If the fundamental
concepts of calculus (such as the limit concept underpinning differentiation
and integration) prove difficult to master, one solution is to focus on the
symbolic routines of differentiation and integration. At least this resonates
with earlier experiences in arithmetic and algebra in which a sequence of
manipulations are performed to get an answer.

The problem is that such routines very soon become just that—routine,
so that student begin to find it difficult to answer questions that are
conceptually challenging. The teacher compensates by setting questions on
examinations that students can answer and the vicious circle of procedural
teaching and learning is set in motion. As a result, conceptual connections
become less likely to be made. For instance, Eisenberg (1992) showed that
students often failed to connect differentiation and integration as inverse
processes, simply noting that there were distinct procedures to cope with
each.

For those students who take an initial calculus course based on
elementary procedures, there is evidence that this may have an unforeseen
limiting effect on their attitudes when they take a more rigorous course at a
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later stage. Commenting on the results of a large study comparing the
results of students taking advanced placement calculus courses in school,
Ferrini-Mundy and Gaudard (1992) found that

it is possible that procedural, technique-oriented secondary school courses
in calculus may predispose students to attend more to the procedural aspects
of the college course. (p.68)

Arriving at college and finding conceptual difficulties in the calculus,
students can be seen to be developing short-term techniques for survival:

Much of what our students have actually learned ...—more precisely, what
they have invented for themselves—is a set of ‘coping skills’ for getting
past the next assignment, the next quiz, the next exam. When their coping
skills fail them, they invent new ones. The new ones don’t have to be
consistent with the old ones; the challenge is to guess right among the
available options and not to get faked out by the teacher’s tricky questions.
… We see some of the ‘best’ students in the country; what makes them
‘best’ is that their coping skills have worked better than most for getting
them past the various testing barriers by which we sort students. We can
assure you that that does not necessarily mean our students have any real
advantage in terms of understanding mathematics.

(Smith & Moore 1991, p. 85)

Selden, Mason and Selden (1989; 1994) showed that students could learn to
perform well on standard tasks, but as soon as a more unusual task was
given, the success rate dropped alarmingly. This was investigated using two
questionnaires. One had routine questions such as:

If f(x)=x–1, find f '(x),

or

If f(x) = x5+x, where is f increasing?

The other consisted of non-routine questions such as:

Let f (x) =
ax, x ≤ 1,

bx2 + x +1, x >1.






Find a and b so that f is differentiable at 1.

Of nineteen grade A and B students, none could solve the non-routine
problem above and two thirds could not complete any of five non-routine
problems on the paper. Their average routine score was 74% but the
average non-routine score was 20%.

4.3 Infinitesimal concepts

In an attempt to make the calculus more intuitively conceptual, one method
might be to build on the intuitions that students adopt naturally when
dealing with dynamic limit concepts. In his Calculus made Easy, at the turn
of the century, Silvanus P. Thompson approached the calculus using tiny
quantities and begged the reader ‘not to give the author away nor to tell the
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mathematicians what a fool he really is’. It proved to be a satisfying book
precisely because the notion of ‘infinitely small’ is so cognitively appealing.
When a logical approach using infinitesimals was introduced as
‘nonstandard analysis’ (Robinson 1966) it had only limited impact. Its
subsequent use in a calculus text (Keisler 1976) had a limited success, even
though Sullivan (1976) showed that students following such an approach
had a better grasp of the underlying concepts and were better on formal
ε–δ questions than those following a standard calculus course.

Frid (1992; 1994) compared the effects of three approaches to the
calculus: a technique-oriented calculus course, a ‘concepts first’ course, and
one using intuitive non-standard analysis where the limit was described in
terms of ‘rounding off’ values to give the limiting value. She found that
students using infinitesimal language were far more likely to be able to
verbalise subtle conceptual ideas. For instance, Jennifer (following the
technique-oriented course) could easily handle a problem with implicit
differentiation but could not explain what the limit notation for the
derivative meant. On the other hand, Neill, following the non-standard
course, explained the derivative saying ‘if you were to magnify that
function infinitely it would look like a straight line’, then related it to the
gradient where the ‘rise and the run would be infinitesimal’. A closer look
at the language used by the students will show a greater willingness to talk
coherently about the concepts in infinitesimal terms. However, there are
still underlying beliefs similar to those experienced by students
approaching calculus in an intuitive dynamic way.

4.4 The underlying number system

Although mathematicians may think of the real numbers in terms of limits
of decimal expansions, or a complete ordered field, or a corresponding
geometric representation of the number line, closer inspection reveals our
concept images to be considerably more diffuse and self-contradictory. For
instance, we believe that a point has ‘no size’ and yet, somehow, that these
can make up a visual ‘real line’.

Romero i Chiesa and Azcárate-Gimenez (1994) asked students a number
of conceptual questions about the real number line, both in terms of
decimals and the visual representation. They found absolutely no evidence
to suggest that students had any intuitive idea of the mathematical ‘real
line’. Three questions provoked interesting reactions:

• Imagine a number line. What do you see?
• Imagine this is magnified, what do you see now?
• What happens at infinite magnification?

47% of students questioned began by seeing the line as a whole and 28%
saw elements in it—frequently reported as disks or as little spheres. At
infinite magnification this changed to 20% seeing a line and 37% seeing
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individual elements. The response of the reader might be interesting on this
one. The classical mathematician may say the real numbers have no
infinitesimals, so the third part has no meaning, but using non-standard
analysis it is perfectly in order to do the magnification in a larger field R*
and then restrict the view only to elements of the real line R. The answer is
that at infinite magnification, there will only be one real point in view
(because two points in view would differ by an infinitesimal quantity
before magnification, and in R—which has no infinitesimals—these two
points must be one and the same!)

Monaghan (1986) found that students were comfortable with whole
numbers and rationals on the line, and came to be familiarised with other
numbers such as √2, π and e, but regarded infinite decimals as somehow
‘improper’ because they ‘go on forever’ and never reach their final limit.

Using decimal representations has side-effects that are not always
immediately apparent. Decimals expressed to a finite number of places are
discrete, so that to, say, four decimal places, there is a first positive
decimal, namely 0.0001. Wood (1992) found that a significant minority of
mathematics majors after a year of analysis were able to affirm that there
was no least positive real number (because if x were the least, x/2 would be
smaller), but there was a first positive number (‘point many noughts one’).
This extrapolation of finite decimals can inadvertently cause different
views with the limiting process as x tends to a depending on whether it is
viewed geometrically (allowing ‘smooth’ movement) or as decimal
numbers (perhaps in more discrete steps).

5. CALCULUS

5.1 Visualising Calculus Concepts

A potent visual approach using computer graphics is to magnify the graph
of a function. This uses the same essential idea from non-standard analysis
(that a differentiable graph under infinite magnification is a straight line).
In the computer version, as the magnification increases, the graph looks
less curved, and when it looks visibly straight, then the gradient of the
graph is represented by the gradient of the line on the screen. Such an
approach can use the visible limitations of computer graphics, emphasising
that what is seen is only an approximation of the mental concept, yet
making the notion of limit implicit in the magnification procedure rather
than explicit in a formal definition.
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magnify

Figure 14: Magnifying the nowhere differentiable
blancmange function

By drawing graphs on the
computer and having a second
window in which part of the
graph can be magnified, it is
possible to see that some graphs
look progressively less curved
as they are magnified to a
greater degree (Figure 12; Tall
1985).

A graph with this property
is called ‘locally straight’. It is
possible to build up the
gradient function of a locally
straight graph by computing
the numerical gradient
between x and x+c for small c
at points along the graph, and
hence, ‘see’ the gradient graph
and experimentally conjecture
its formula (figure 13).

It is also sensible to link this process with the symbolic formulae at the
same time (particularly in simple cases such as y=x2) so that the visual
insight supports the symbols used for more sophisticated manipulations and
computations. Such approaches have been adopted in syllabuses in the UK
and elsewhere (School Mathematics Project 1991, Barnes 1991).

Further visual insights which support sophisticated ideas in analysis
which were not long ago considered impossible to convey to novices now
prove to be visually easy to imagine. For instance, the notion of different
left and right gradients at a point can be seen magnified as a ‘corner’ and
the graph of a non-differentiable function simply looks wrinkled at every
level of magnification (Figure 14; Tall 1986).

Once differentiation is seen as the
gradient of the graph under
magnification, ‘undoing’ differen-
tiation simply means knowing the
gradient and finding the related
graph. This generalises to finding
the solutions of differential
equations which can be performed
numerically by computer software
and displayed visually (figure 15;
Hubbard & West 1990).

magnify

Figure 12: Magnifying a locally straight graph

Figure 13 : Building the gradient function of sinx
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Figure 15: A family of solutions of a differential equation

Integration can be viewed as finding the area under a graph, and this can be
visualised as adding up the approximate areas of thin strips under the
graph. There are known cognitive difficulties here. For instance, Schneider
(1993, pp.32, 33) reports that, in considering upper and lower sums for the
function y=x3 from 0 to 1 by taking more and more rectangles (figure 16),
some students think that ‘as long as the rectangles have a thickness, they do
not fill up the surface under the curve, and when they become reduced to
lines, their areas are equal to 0 and cannot be added.’

y=x3

10

y=x3

10
Figure 16: Lower and upper sums

The limit process contains implicit conceptual obstacles (Sierpiń ska 1985
1987). For instance some students believe that the process is potentially
infinite, going on forever, but that it cannot reach its conclusion.

Given that the area A(x) from a fixed point a to a variable point x to be
considered as a function of x (which may prove difficult for students who
conceive of functions purely in terms of formulae), the fundamental
theorem of calculus says that A'(x)=f(x). Visually the additional area under
the curve from x to x+h is A(x+h)–A(x) (figure 17).
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A(x)

x x+h

A(x+h)–A(x)

h

f(x)

Figure 17: The area under a graph

Here there is only one strip to deal with and it may be more visually
evident that, under appropriate conditions, as h→0, so

A(x + h) − A(x)
h

→ f (x)

One insight is that a continuous graph ‘pulls flat’ when the vertical scale is
kept constant and the horizontal is stretched, whilst looking though a fixed
size viewing rectangle (figure 18; Tall 1986; 1991).

Figure 18: Horizontal stretching of the sine graph

Here the area from x to x+h is seen to be approximately a rectangle height
f(x), width h and, as h tends to zero, the approximation may be imagined to
‘get better’, so that (A(x+h)–A(x))/h more closely approximates f(x), as
required. Again there are clear cognitive obstacles, for instance in trying to
imagine how an approximation becomes an equality in the limit.

The ‘pulling flat’ property can be seen to be equivalent to point-wise
continuity by imagining the pixel to represent a height f(x)±ε, then, if it
pulls flat in the window, there must exist a δ>0 such that picture of the
graph from x–δ to x+δ lies within the pixel height, f(x)±ε. That is,
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given ε>0, there is a δ>0 such that
x–δ < t < x+δ implies f(x)–ε < f(t) < f(x)–ε.

There seems to be little published research on the formal beginnings of
analysis, however, my own personal experience suggests that above average
(as opposed to gifted) students can learn to discuss the concepts
meaningfully based on the visual imagery, but that the translation to the
formal proof proves difficult. First the student usually imagines the
definition to describe an existing object, rather than define the object by
deducing its properties (Sierpin´ ska 1992), thus finding it strange to ‘prove’
obvious properties that seem already to be true. Then there are further
difficulties because of the complex use of quantifiers and the formality of
the deductions. The decision of most UK universities to abandon the
teaching of formal analysis as a first year university course is evidence of
its huge cognitive difficulty.

5.2 Numerical Representations

Numerical representations can occur in a number of ways, including:

• using software which prints out tables of values, possibly as part
of a ‘multiple-representation package’,

• using spreadsheets to build up tables of values (which may then
be represented graphically),

• student programming of numerical routines.

‘Tables of values’ are a favourite device of mathematics educators which
hardly figured in traditional calculus. They offer a simple numeric
representation to complement the visual graph and the symbolic formula.
However, there are two very distinct uses for tables of values. One is as a
genuine table of data, for instance, from experimental readings in a real-
world context. Here the ‘change’ from one data reading to the next is
concerned with the discrete theory of finite differences rather than the
limit theory of the calculus. The other use is to print out a selected table of
evaluations from a function given by a procedure or formula. Here new
tables can be generated as required to do such things as search for a change
in sign and home in on a zero of the function.

Placing the data (either from an experiment, or from a function
formula) into a spreadsheet gives opportunities for investigative
exploration (and subsequent graphic interpretation). For instance, it is
possible to design a worksheet to draw a graph and its gradient (figure 19).
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Figure 19: Using a spreadsheet to calculate and display the graph and gradient of sinx

Spreadsheets are also particularly good for iterative work, for example
using a recurrence formula to calculate the limit of a sequence such as the
Newton-Raphson method of finding the zero of a differentiable function
(figure 20). Hunter et al. (1993) found this to be a more effective method
of showing the workings of the iteration in successive lines of code as
opposed to a more enigmatic use of recursion with a symbol manipulator.

Figure 20: Using a spreadsheet for Newton-Raphson approximations to a root of f(x)=x2–2

Spreadsheets can be used in other ways for imaginative display of data.
Abramovich (1995) used them to study the cauchy convergence of
sequences by calculating the difference between sm and sn in the (m, n)th
position, placing different symbols according as to whether it was bigger
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or less than a given positive ε. The resulting display allows the viewer to
select a value of N such that, when m, n exceed N, then |sm–sn|<ε.

Programming numerical procedures to carry out mathematical
processes can be of value in calculus. For instance, programming iterative
solutions of equations (‘undoing’ function problems) or programming the
solutions of differential equations (‘undoing’ differentiation problems) or
programming the area under a curve (‘doing’ integration). Such
approaches enable the student to investigate ideas experimentally, for
example, to see what kind of errors occur with different methods of
calculating areas (such as ‘first ordinate’, ‘last ordinate’, ‘mid-ordinate’,
‘trapezium rule’ and ‘Simpson’s rule’). However, this involves two separate
skills—programming and conceptualising mathematical concepts—and the
two may prove difficult to do at the same time for students of average
ability and even above. Cowell and Prosser (1991) report a mixture of
‘good and bad news’ in the use of True BASIC.

The students largely agreed that the computer assignments were well
integrated with the rest of the course, and that learning the necessary
programming was easy, but they disagreed that the computer enhanced their
interest in the course material, they disagreed that the computer should be
dropped and they were divided on whether the computer assignments were
a valuable part of the course (Cowell & Prosser 1991, pp.152, 153)

Li and Tall (1993) report that programming functions in structured BBC
BASIC helped students conceive of functions as mental objects and to
conceptualise sequences and series as functions, but did not help greatly in
thinking of the limit as a concept rather than a process. On the contrary,
the sequences programmed (including a sequence sn taking the value 1/n2 if
n is prime, 1/n3 if not prime and even, 1/n! otherwise) sometimes took
considerable time to stabilise to 8 significant figures and so gave the
impression that the limit may not be reached. Some students sensed that an
increasing sequence bounded above might not be convergent. This led to an
open discussion on the completeness property which remained unresolved
because students who were unsure if a sequence converged were unwilling
to accept that it could be deemed to be convergent merely by asserting a
‘completeness axiom’. These students were ‘capable’ rather than ‘gifted’
and when they did an analysis course two years later with another lecturer,
only a small minority could shake off inappropriate images to use the
definitions of limits to prove that a function was continuous or
differentiable ‘from first principles’ (Pinto & Gray 1995).

5.3 Conceptual Programming

Programming in calculus courses often involves numerical algorithms,
sometimes in the hope that this will give support to later conceptual ideas,
some of which prove not to work nearly as easily as might be hoped. On
the other hand, the computer language ISETL (Interactive SET Language)
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is designed specifically to mirror mathematical ideas, such as the
definitions of sets, with functions as sets of ordered pairs or processes of
assignment, whose names can be used as the input to other functions. Thus
it is possible to defined a function D which takes a function f as input and
return a function D(f) which is a numerical derivative of f. The following
code in ISETL produces the numerical derivative of f for h=0.0001:

D : = func(f);
return func(x);

return((f(x+0.0001)–f(x))/0.0001;
end;

end;

where return func(x) denotes that D returns a function of x using the
given formula. For any function whatever, such as the exponential function
exp, then D(exp) will be another function. If x is a number, then
D(exp)(x) is a number, namely the value of the numerical derivative of
exp calculated at x.

A mid-ordinate approximation to the Riemann integral from a to b with
n steps can be programmed as:

RiemLeft : = func(f,a,b,n);
x := [a + ((b–a)/n)*i : i in [0..n]];
return %+[f(x(i–1))*(x((i)–x(i–1)) : i in [1..n]];

end;

(where the symbol %+  stands for the summation symbol Σ). The
procedure computes the equally spaced set of values x(0), ..., x(n), then
calculates the Rieman sum of the areas of strips width x((i)–x(i–1),
height f(x(i–1)) as i varies from 1 to n.

The approximate integral operator can then be defined for any function
f as

Int : = func(f,a);
return func(x);

return( RiemLeft(f,a,x,25);
end;

end;

(To improve accuracy, instead of using 25 steps in the function, it is
possible to repeat the computation for an increasing number of strips and
only return the value when it has stabilised to an appropriate accuracy.)
The students are encouraged to combine D and Int , such as Int(D(f),a)
and D(Int(f,a))  in various activities in an effort to help them construct the
relationship between differentiation and integration (Dubinsky &
Schwingendorf 1991). This method still inhabits the world of numerical
approximations and the consequent inherent cognitive complications
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involving numbers and limits, but it has the advantage of constructive
activities designed to mirror the corresponding mathematical ideas.

5.4 Computer Algebra Systems

Computer algebra systems (or symbol manipulators) are now being used
more extensively in teaching calculus, from courses based on software
notebooks that include symbol manipulation and graph-drawing in
Mathematica (Brown, Porta & Uhl 1990; 1991a), to laboratory workshops
added to standard courses in Maple (e.g. Muller 1991), and research
projects (e.g. Heid 1988; Palmiter 1991).

Brown, Porta and Uhl; (1990; 1991b) report sophisticated student usage
of symbolic facilities provided in notebooks in Mathematica, with students
passing the symbol manipulation to the software whilst concentrating on
other aspects of the problem. Muller (1991) reports a project in which a
first course (1988) was received enthusiastically by volunteers and was
followed by two successive compulsory courses (1989; 1990) which still
showed some gains, though at a more realistic level. An important factor in
this project was a significant reduction in student withdrawal rates and
failure rates.

Heid (1988) used graphical software to illustrate concepts and the early
computer algebra system MuMath to carry out symbol manipulation, only
practising paper and pencil skills in the last three weeks of a fifteen week
course. The students performed better on conceptual questions and were
statistically not significantly different from control students doing a full
fifteen week course on standard techniques.

Palmiter (1991) used the symbolic software MACSYMA to teach one
cohort of students a first course in integration for five weeks whilst a
parallel cohort studied a traditional course for a full ten weeks. The
MACSYMA students used the software to carry out routine computations
whilst the traditional students were taught the techniques. Both groups took
a conceptual examination and a computational examination at the end. The
conceptual examination was taken by both groups under identical
conditions, the experimental students were allowed to use MACSYMA in
the computational examination but had only one hour whilst the control
students were given two hours. The results showed in conceptual questions
the experimental students achieving an average of 89.8% (±15.9) compared
with the average traditional course score of 72.0% (±20.4). and on
computational questions an average of 90.0% (±13.2) compared with
69.6% (±24.2).

This gives clear indications that a ‘student plus manipulation tool’ can be
more successful in conceptual and computational tasks than a student
working in a traditional manner.
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However, other experiments do not always show significant
improvements in performance, particularly in paper and pencil
manipulative skills. Comparing students in a computer laboratory using
Derive and a traditional course, Coulombe and Mathews (1995) found no
significant differences in knowledge, paper and pencil manipulation,
conceptual understanding, or higher order thinking skills, although it
produced similar levels of performance whilst giving students additional
familiarity with computer technology.

The use of software with graphical facilities and symbol-manipulation
changes students conceptions of the calculus and their abilities to carry out
the related skills. For instance, having graphs drawn by technology does
not involve explicitly calculating and plotting function values. Hunter et al.
(1993) found that a third of the students in one class could answer the
following question before the course, but not after:

‘What can you say about u if u=v+3, and v=1?’
During the course they had no practice in substituting values into
expressions and the skill seems to have receded until it is not used in the
post-test.

By the same token, Monaghan et al. (1994) found that some students
using a computer algebra system to carry out the process of differentiation
responded to a request for an explanation of differentiation by describing
the sequence of key-strokes that were necessary to get the result. It appears
that some students may simply replace one procedure which has little
conceptual meaning with another.

Changes in learning are caused by a variety of factors of which the
technology is only one. Coston (1995) studied the effects on grades of
cooperative learning, with and without the use of technology. The results
showed no significant differences using technology alone but cooperative
learning plus technology produced a significant improvement in attitude
whilst cooperative learning by itself produced a highly significant
improvement in problem solving.

In a technological age where grocery bills are totalled at the checkout
by computer technology and computers are used throughout business and
commerce, the need to test a student in the absence of the technology may
become increasingly questioned. Yet while some ‘conceptually oriented’
courses have shown students able to respond well to conceptual questions,
able to perform manipulations better using the technology and performing
no worse at paper and pencil skills with a little practice, the knowledge
being obtained is certainly different and is likely to have new strengths and
also hidden flaws.
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6. THE FUTURE FOR FUNCTIONS AND CALCULUS

In the mid-1980s, calculus was under attack from discrete mathematics,
which seemed to some to be the mathematics of the computer and so the
mathematics of the future. At the time I wrote an article entitled ‘W(h)ither
calculus’, with an intended pun on the first word with or without its ‘h’, for
there were suggestions that the calculus would wither away and die (Tall
1987). Subsequent events have shown the reverse is true. Calculus is at the
forefront of curriculum reform in mathematics with its vigour renewed by
the advent of the computer. Mathematicians are discovering their zest for
experiment and adventure and are passing on their enthusiasms to their
students. At the same time, the notion of function has been seen as a central
theoretical construct. The first waves of reform have stimulated the system
and have been accompanied by clarion calls declaring the new dawn. The
time for evaluation and cool consideration has arrived but should not be
allowed to dampen the ardour which many of the reformers have passed on
to their students.

Just as enthusiasms for the theory of ‘new mathematics’ in the 1960s had
to be tempered by the realities of the growth of knowledge in the
individual, so the fundamental nature of the function concept is beginning
to be seen in a more realistic light of cognitive development. It continues to
be viewed as a fundamental mathematical notion and has a prominent role
in the curriculum, but the underlying cognitive conceptual difficulties are
beginning to be better understood, even if it is proving more problematic
to cater for them.

Calculus has broadened in its meaning from traditional symbolic
techniques to a wider science of how things change, the rate at which they
change, and how their growth accumulates. Instead of being only an
intellectual challenge for the elite, it has widened its appeal to allow
experimental exploration and a quest for meaning without losing sight of
the long-term need for meaningful proof. It exists in a variety of forms
that allow students to harness the power of computer software to seek
insight from a variety of viewpoints.

The discovery of the calculus over three centuries ago was one of the
most significant events in the evolution of civilization. The momentous
changes occurring with the growth of information technology in the last
decade show calculus still playing its central role.
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