Trigonometric Substitutions

Consider the integral



     dx     
   ——
 9-x2
 
.

At first glance, we might try the substitution u = 9-x2, but this will actually make the integral even more complicated!

Let's try a different approach:

The radical

  _____
 9-x2

represents the length of the base of a right triangle with height x and hypotenuse of length 3:

Figure 1 For this triangle, sinθ = x/3, suggesting the substitution x = 3sinθ. Then θ = arcsin(x/3), where we specify -π/2 ≤ θ ≤ π/2. Note that dx = 3cosθ dθ and that

  _____
 9-x2

= 3cosθ.


With this change of variables,

 
     dx     
   ——
 9-x2
 
 
 =
 
3cosθ dθ
3cosθ
 
 =
 
 
dθ = θ+C = arcsin




x
3




 
+C.

Caution!

  • The sketch of the triangle is very useful for determining what substitution should be made. Note, though, that the sketch only has meaning for x > 0 and θ > 0.

  • It is important to be careful about how the angle θ is defined. With the restrictions on θ mentioned in the examples here, we avoid sign difficulties even when x < 0.

There are two other trigonometric substitutions useful in integrals with different forms:

Example

Let's evaluate





       dx       
x2   _____
 x2-4
 
.



The radical

  _____
 x2-4

suggests a triangle with hypotenuse of length x and base of length 2:

Figure 2 For this triangle, secθ = x/2, we we will try the substitution x = 2secθ. Then θ = sec-1 (x/2), where we specify 0 ≤ θ < π/2 or π ≤ θ < 3π/2. Note that dx = 2secθtanθ dθ and that

  _____
 x2-4

= 2tanθ.

Then





       dx       
x2   _____
 x2-4
 
=

2secθtanθ
(2secθ)2(2tanθ)
 dθ =

1
4
cosθ dθ = 1
4
sinθ+C.

But we see from the sketch that

sinθ =    _____
 x2-4

x

.
so




       dx       
x2   _____
 x2-4
 
=    _____
 x2-4

4x

+ C.

We may also use a trigonometric substitution to evaluate a definite integral, as long as care is taken in working with the limits of integration:

Example

We will evaluate



1

-1 
dx
(1+x2)2
.

The factor (1+x2) suggests a triangle with base of length 1 and height x:

Figure 3 For this triangle, tanθ = x, so we will try the substitution x = tanθ. Then θ = tan-1(x), where we specify -π/2 < θ < π/2. Here, dx = sec2θ dθ. Also,

  _____
 1+x2

= secθ

so
(1+x2)2 = sec4θ.

Then



1

-1 
dx
(1+x2)2
=


π/4

-π/4 
sec2θ
sec4θ
 dθ
The new limits of
integration follow from:
π/4 = arctan(1)
-π/4 = arctan(-1)
=


π/4

-π/4 
cos2θ dθ
=


π/4

-π/4 
1
2
(1+cos2θ) dθ
=
1
2
(θ+[1/ 2]sin2θ) |
|
|
π/4

-π/4 
=
1
2





π
4
+ 1
2





- 1
2





- π
4
- 1
2





=
π
4
+ 1
2
.
We could also have converted the
indefinite integral result back
to the variable x and evaluated
the result at x = 1 and x = -1.

Con Maple o altro software di calcolo simbolico questi ed altri integrali si calcolano facilmente; ad esempio per il precedente si trova come integrale indefinito  int(1/(1+x^2)^2, x) = x / (2(1+x2)) + arctan(x)/2  e come integrale definito  int(1/(1+x^2)^2, x = -1..1) = 1/2 + π/4.

Analogamente, il secondo integrale lo si ottiene immediatamente battendo  int(1/(sqrt(x^2-4)*x^2), x).  È certamente più significativo calcolare gli integrali, "strani" piuttosto che imparando a memoria i trucchi da applicare, usando le uscite di software di calcolo simbolico, e interpretandone/controllandone la significatività.

There is often more than one way to solve a particular integral. A trigonometric substitution will not always be necessary, even when the types of factors seen above appear. With practice, you will gain insight into what kind of substitution will work best for a particular integral.


Key Concepts [index]

Trigonometric substitutions are often useful for integrals containing factors of the form

(a2-x2)n,                      (x2+a2)n,                   or       (x2-a2)n.      

The exact substitution used depends on the form of the integral:
  (a2-x2)n  
  (x2+a2)n  
  (x2-a2)n  
Figure 4
Figure 5
Figure 6
x = a sinθ
x = a tanθ
x = a secθ
dx = a cosθ
dx = a sec2θ
dx = a secθ tanθ
  ______
 a2-x2
 
= a cosθ      
  ______
 x2+a2
 
= a secθ      
  ______
 x2-a2
 
= a tanθ