La forza che il dispositivo di trazione raffigurato a fianco esercita sul piede del paziente pu˛ essere maggiore di 3 kg?  Quanto vale?      

      Nella figura a fianco abbiamo rappresentato con F1 ed F2 le due trazioni della fune e con k le loro componenti verticali, della stessa intensitÓ ma di direzioni opposte.  Devo determinare h1+h2.
Sapendo che F2 è di 3 kg, posso determinare k.  Indico con "degrees" π/180.
k = 3*sin(25*degrees);   quindi:
h2 = 3*cos(25*degrees);   determiniamo h1:
h1 = cos(55*degrees)*F1;  F1*sin(55*degrees) = k;   quindi:
h1 = cos(55*degrees)*k/sin(55*degrees);   concludendo;
h1;  h2;   h1+h2
0.8877615; 2.718923; 3.606685     Arrotondo a  3.6 (kg)

Se metto in R o in WolframAlpha
3*sin(25*degrees)*cos(55*degrees)/sin(55*degrees) + 3*cos(25*degrees)
ottengo 3.606685

La forza complessiva Ŕ maggiore di quella esercitata dalla massa appesa: oltre a questa forza infatti interviene anche quella esercitata dal soffitto, che trattiene la parte superiore del cavo. La somma delle due forze viene poi ridotta a causa degli angoli (al diminuire di 55░ e di 25░ la somma delle due forza aumenta di intensitÓ; quando arrivano a 0░ la forza di trazione Ŕ di 6 kg).

I calcoli posso farli facilmente anche con questo script online:

25^ = 0.4363323129985824
sin(0.4363323129985824) = 0.42261826174069944
0.42261826174069944 * 3 = 1.2678547852220983
55^ = 0.9599310885968813
cos(0.9599310885968813) = 0.573576436351046
1.2678547852220983 * 0.573576436351046 = 0.727211629518312
55^ = 0.9599310885968813
sin(0.9599310885968813) = 0.8191520442889918
0.727211629518312 / 0.8191520442889918 = 0.8877614779677656
25^ = 0.4363323129985824
cos(0.4363323129985824) = 0.9063077870366499
0.9063077870366499 * 3 = 2.7189233611099497
0.8877614779677656 + 2.7189233611099497 = 3.6066848390777153
 

Con WolframAlfha  (vedi):
3*sin(25░)*cos(55░)/sin(55░) + 3*cos(25░)       3.60668483907771567...
rouund( 3*sin(25░)*cos(55░)/sin(55░) + 3*cos(25░), 0.1)       3.6