Delle piccole piastrelle hanno la forma raffigurata a fianco. Sono dei triangoli equilateri di lato 10 cm. Qual è l'area della parte centrale, di colore arancione? [le linee tratteggiate ti servono per capire la forma delle parti della piastrella]   

L'area del triangolo, in cm², è 10*sqrt(10^2-5^2)/2 = 25*sqrt(3); quella di ciascuno dei tre spicchi di cerchio da togliere da esso è pi*5^2/6 = 25*pi/6.  Quindi l'area della parte centrale è 25*sqrt(3)-25*pi/2, ossia 25√3−25π/2, che vale (approssimativamente) 4.031362 (che ha ordine di grandezza sensato tenendo conto della figura).

# Se ti interessa, ecco come  stata tracciata la figura con R:
source("http://macosa.dima.unige.it/r.R")
BOXW(-10,10, -5,15)
circl(-5,0, 5, 0); circl(5,0, 5, 0); circl(0,sqrt(3)/2*10, 5, 0)
B = "blue"
ARC(-5,0, 5, 0,60, B); ARC(5,0, 5, 120,180, B); ARC(0,sqrt(3)/2*10, 5, -120,-60, B)
polyline(c(-5,5,0,-5), c(0,0,sqrt(3)/2*10,0), "black")
# Se vuoi i colori:
O = "orange"; P = "pink"
polyC(c(-5,5,0,-5), c(0,0,sqrt(3)/2*10,0), O)
for(R in seq(0,5,1/10) ) {
ARC(-5,0, R, 0,60, P); ARC(5,0, R, 120,180, P); ARC(0,sqrt(3)/2*10, R, -120,-60, P)}
ARC(-5,0, 5, 0,60, B); ARC(5,0, 5, 120,180, B); ARC(0,sqrt(3)/2*10, 5, -120,-60, B)
polyline(c(-5,5,0,-5), c(0,0,sqrt(3)/2*10,0), "black")