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Formulating, Analyzing, and Solving 2-Player Competitive Games
Introduction

In this module we will study a particular kind of constrained linear optimization problem of great interest in economics, often referred to as two-player, competitive game theory.  It builds upon the material in the linear programming module, and the material on discrete probability (primarily, finding the mean, or expected value, of a discrete random variable).  If you have ever heard someone refer to a situation as being a “zero-sum game”, that terminology comes from this theory.  It can effectively model actual recreational games, like Rock/Paper/Scissors or Tic Tac Toe, as well as sports and economic situations where two “players” (which could each be a team of people) are competing for a common prize (to win the game, or for portions of a fixed budget, for example).  We will see how such games are typically defined, based on strategies spelled out for each player (which could be a single choice or a complicated logical strategy of the “I’ll do this first, then if she does that, then I’ll…” type).  We assume that, given any combination of strategies of the two players, both would agree that the consequences can be summarized as a numerical payoff to one of them in such a way that the opposite (negative) of that payoff would be the consequence to the other player (hence the “zero sum” notion), and thus the game can be presented as a matrix (table).  We will then go over how each player can analyze the strategic situation and make decisions about what strategy to use in playing the game.  John Nash, the subject of the book and movie A Beautiful Mind, received a Nobel Prize in Economics for his work in game theory, and we will present his notion of what constitutes an “equilibrium” solution to these games, and how to find equilibrium solutions, both by hand and using technology.

Here are some examples of the kind of problems you should be able to solve after studying this module:

· What is a rational strategy when playing Rock/Paper/Scissors?

· You like to charge the net against your regular tennis partner, who always hits a powerful deep ground stroke either to the middle of the court, or to one of the corners.  You always stay in the middle, or move to one side in anticipation of his shot.  You can estimate your chances of eventually winning the point for every combination of where you go and where he shoots, and he would basically agree with those probabilities.  What should be your strategy?
· You are the head Union negotiator, and are about to enter binding arbitration with Management.  This means you both must submit a recommended hourly pay increase for the Union employees (between $0 and $1.00), and an arbitrator (upon whom both sides have agreed) will make a final decision based upon the submissions of each side and other considerations.  Both sides know the personality and style of the arbitrator, and agree what the consequences (actual pay increase) for different combinations of submissions would be.  What amount should you submit?
After studying this module, you should be able to solve problems similar to those above and should also:
· Understand what situations can be represented as two-player competitive games, and how to set up the payoff matrix that defines them.
· Understand the difference between pure strategies and mixed strategies.

· Understand what it means for one strategy to dominate another, and how to recognize dominant and dominated strategies.

· Understand how progressive elimination of dominated strategies can simplify the structure of a game, and can lead to a unique rational solution for both players, and be able to find such a solution if it exists.

· Understand what a Nash equilibrium is, and how to find one (both for pure strategies and mixed strategies).
· Understand that a mixed-strategy Nash equilibrium must exist, how to formulate the problem of finding it as a linear program (and what it corresponds to graphically when there are 2 pure strategies), and how to solve that linear program graphically (for 2 undominated pure strategies) and using technology.

Defining 2-Player Competitive Games
Sample Problem 1:  In the game of Rock/Paper/Scissors, each player simultaneously puts out a hand signal: a fist for Rock, a flat palm for Paper, and two fingers for Scissors.  If the signals are the same, there is a tie, and no one wins.  Rock beats Scissors (because a rock can smash scissors), Paper beats Rock (because paper can cover a rock), and Scissors beats Paper (because scissors cut paper).  How can this game be described mathematically?
Solution:  This is a perfect simple example of what is called a two-player competitive game.  This means that there are two players, that each player has a discrete set of possible strategies, and that for any combination (pair) of strategies of the two players, the payoff to one can be expressed as the opposite (negative) of the other.  In Rock/Paper/Scissors, there are indeed two players, each has the same 3 strategies, and we can assign a payoff of  1  to the player who wins, and a payoff of  -1  to the player who loses.  If there is a tie, we can assign a payoff of  0  to both players.  
Since the payoff to the second player can be expressed as the negative (opposite sign) of the first, the entire game can be described by a payoff matrix whose entries are the payoffs to the first player (whom we will call Player A), where the rows correspond to the strategies of Player A and the columns correspond to the strategies of Player B.  The entry in row  i  and column  j  of the matrix would correspond to the payoff to Player A if Player A plays their  i’th  strategy and Player B plays their  j’th strategy.  Clearly, the payoff to Player B in that situation would then be the negative of the payoff to A.  In our example, then, the payoff matrix would be as follows:
	Payoff to A
	B1: Rock
	B2: Paper
	B3: Scissors

	A1: Rock
	0
	-1
	1

	A2: Paper
	1
	0
	-1

	A3: Scissors
	-1
	1
	0


The strategies that identify each row and column of the payoff matrix are called pure strategies.  There is another kind of strategy, called a mixed strategy, that we will discuss later. 
The above payoff matrix is a mathematical representation of the game, as requested.  ⁪

The payoff matrix gives a concise and clear definition of a 2-player competitive game, but it doesn’t in itself say what either player should do.  The payoff matrix corresponds essentially to the rules of the game, at least from a certain strategic perspective.  How can we start to compare and analyze strategy options?  Let’s look at another example to help.

Dominated Strategies

Sample Problem 2:  Consider the game with the payoff matrix given below:

	Payoff to A
	B1
	B2

	A1
	3
	1

	A2
	0
	-2


What should each player do?


Solution:  Let’s look at the game first from A’s perspective.  No matter whether B plays  B1  or  B2 , A always does better playing  A1  than  A2 .  In game theory, we would say that strategy  A1  dominates strategy  A2 .  In general we say that one pure strategy dominates a second pure strategy (so the second is dominated by the first) for a player if, no matter what pure strategy the opponent plays, the payoff to the original player is always at least as good using the first strategy compared to the second strategy, and sometimes (for at least one pure strategy of the opponent) the first strategy is strictly better than the second strategy.  You can recognize that one strategy dominates another for Player A in the payoff matrix if all the entries in one row are greater than or equal to (and at least once strictly greater than) another row, as we see is true for  A1  compared to  A2  (in fact, the payoffs for  A1  are always strictly greater than those of  A2  here).

If we want to understand the game from Player B’s point of view, one way would be to rewrite the payoff matrix from Player B’s perspective.  It would look like this:

	Payoff to B
	A1
	A2

	B1
	-3
	0

	B2
	-1
	2


Notice that the numerical values of all of the payoffs for each combination of strategies are the same, but the sign (positive/negative) is the opposite, since the payoff to B is always the opposite of the payoff to A.  However, the common practice in game theory is to only use the original version of the matrix (giving the payoffs to Player A for each combination), and to be aware that when Player B is making decisions or choices, Player B will want the smallest possible value (to minimize the payoff to A, which will maximize the payoff to Player B).

Does Player B have any dominant strategies?  Here we have to be a little careful.  Remember that the payoffs in the payoff matrix are from the perspective of Player A, so when Player B is making decisions, the payoffs in the matrix are measuring how bad the consequences are for Player B!  So if A plays  A1 ,  B2  is better for Player B than  B1 , because A gains only 1 unit  (meaning B loses 1 unit) if B plays  B2 , compared to A gaining 3 units (B losing 3 units) if B plays  B1 .  If A plays  A2 ,  B2  is still better than  B1  for B, because the payoff to A is  -2  vs.  0  (so a gain of 2 for B vs. a gain of 0).  In other words, whichever strategy A plays, B is better off playing  B2  than  B1 .  This means that  B2  dominates  B1  for Player B.  Using the payoff matrix, you can recognize that one strategy dominates another for Player B if all the entries in one column are less than or equal to (and at least once strictly less than) another column.  Again, confirm this using the above payoff matrix.

Since it never makes sense for a player to use a strategy that is dominated by another strategy, it is logical to actually cross it off in the payoff matrix.  We show this below:
	Payoff to A
	B1
	B2

	A1
	3
	1

	A2
	0
	-2


Notice that there is only one entry left that is not crossed off in the payoff matrix!  In other words, there is only one rational strategy for each player ( A1  for A and  B2  for B) and therefore only one payoff outcome of the game that makes sense for both players.  Thus we can give clear advice to both players:  Player A should play  A1 , Player B should play  B2 , and the resulting payoff to A should be a gain of 1 unit (so a loss to Player B of 1 unit, or a payoff of  -1 ).  ⁪

Let’s now look at a slightly more complicated game:
Successive Elimination of Conditionally Dominated Strategies

Sample Problem 3:  Consider the game with the payoff matrix given below:

	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0


What should each player do?


Solution:  Let’s first look for dominated strategies that can be eliminated.  For Player A, when B plays  B1 ,  A1  is better, but when B plays  B2 ,  A2  is better.  In other words, Player A has no dominated strategies.  When comparing 2 rows or columns in a payoff matrix, if one is better in one place and the other in another place, then you know that neither strategy is dominated by the other.  This is just a consequence of the definition of dominance.  

What about Player B?  Remember that less (more negative) is better for B!  From Player B’s perspective, (a payoff to A of)  -1  is better than  4  and  0  is better than  1 , so  B2  dominates  B1  ( B1  is dominated by  B2 ).  Thus, we can cross out  B1  in the payoff matrix:
	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0



Now we have an interesting situation.  Both players know that it is rational for Player B to rule out  B1 , since it is never better (in fact, always worse) than  B2 .  Knowing that B will play  B2 (since there were only 2 choices), what should Player A do?  Clearly, Player A is better off with strategy  A2  (with a payoff to A of  0 ) than with  A1  (with a payoff to A of  -1 ).  So Player A should play  A2 .  It is as if Player A just ignored the column for  B1  and checked for dominance with the remaining payoffs (the ones that had not been crossed off).  Since this is a kind of conditional dominance, it does not quite fit the original definition of dominance, so we can’t say that strategy  A2  dominates  A1 .  But we can show this conditional dominance visually by crossing off the  -1  in the payoff matrix, and to emphasize the conditional nature of the dominance, we will use dashed lines rather than solid lines to cross it off.  This is what it looks like:
	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0



Now, as in the last Sample Problem, we are down to one entry in the payoff matrix (one pure strategy for each player), so we have a solution to the game:  Player A should play  A2 , Player B should play  B2 , and the resulting payoff to A will be  0  (so the payoff to B will also be  0 ).  ⁪

This strategy of finding a solution to a 2 player competitive game could be called successive conditional elimination of dominated and conditionally dominated pure strategies.  A procedure to see if a game can be solved in this way might go something like the following:


	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0


1) Look for true dominated strategies for both players, and cross off any such dominated strategies using solid lines on the payoff matrix.
	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0

	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0


2) Focusing only on the remaining uncovered payoff matrix entries (not yet crossed off, which by themselves would form a full rectangular matrix), see if there are any strategies by either player that are now conditionally dominated (dominated using the reduced, uncovered payoff matrix), and cross out only the uncovered entries of those strategies using dashed lines rather than solid lines.
3) Repeat Step (2) until you can cross of no more entries in the payoff matrix.
	Payoff to A
	B1
	B2

	A1
	4
	-1

	A2
	1
	0


4)  (a) If there is only one entry left uncovered in the payoff matrix, then the corresponding combination of strategies is the solution to the game, and that payoff is the payoff to A for the solution (the payoff to B will be the opposite/negative of that value).  

(b) If there are more than one, but all have the same payoff, then any of the corresponding combinations of strategies are equally good solutions to the game, and the common payoff entry is the payoff to A for any of them (and the payoff to B will be the opposite/negative of that value).

(c) Otherwise, you will need more analytical tools to find a solution.  Read on!
Nash Equilibria

Notice that if Player B sticks with the solution of  B2  and Player A changes from  A2  to  A1 , then the payoff to A goes from  0  to  -1 , which is strictly worse for Player A.  Similarly, if Player A sticks with the solution of  A2  and Player B changes from  B2  to  B1 , then the payoff to A goes from  0  to  1 , which is strictly worse for Player B.  In other words, if either player changed their strategy while the other player stayed with theirs, then the original player (the one who changed) would do worse (or possibly the same).  A solution to a 2 player game with this property is called a Nash equilibrium
.  The idea of it being an equilibrium is that there is a certain kind of “force” that pushes in the direction of maintaining that solution.  In this case, that “force” is the fact that, if either player moves away from it unilaterally (if they move, while their opponent sticks to their strategy), they will do worse.  

We have already noted that the solution to Sample Problem 3 was a Nash equilibrium.  How about the solution to Sample Problem 2?  If you go back and look at the payoff matrix, you will see that if Player A changes from  A1  to  A2  (while B stays with  B2 ), then the payoff to A changes from  1  to  -2 , so Player A does worse.  Similarly, if B changes from  B2  to  B1  while A sticks with  A1 , then the payoff to A changes from  1  to  3  (so the payoff to B changes from  -1  to  -3 , from a loss of 1 to a loss of 3), which is worse for Player B.  So the answer is:  Yes, the solution to Sample Problem 2 was also a Nash equilibrium.

This is looking very promising!  So how can we find a Nash equilibrium?  Does one always have to exist for any 2 player competitive game?  These are the questions we will explore next.


If a given entry in a payoff matrix corresponds to a Nash equilibrium, then we know that any other value in that column must be less than or equal to the entry value, so that any other pure strategy choices for Player A would be worse or tied compared to A’s equilibrium strategy, given that Player B sticks with B’s equilibrium strategy.  In other words, the equilibrium payoff entry value is the maximum over that column of numbers.  Analogously, any other value in that row must be greater than or equal to the entry value (so that B would do worse by changing unilaterally, since higher payoffs to A are worse for B), so the entry value is the minimum over that row of numbers in the payoff matrix.  This is why a Nash equilibrium is sometimes called a “minimax” or “maximin” solution to the game, or a “saddle point” solution (since, if you picture a saddle point, “where a flea would sit on the saddle”, on a saddle-shaped surface in 3 dimensions, it is a maximum in the “cowboy’s legs” direction and a minimum in the “horse’s mane toward the tail” direction).

Thus, finding a Nash equilibrium for a payoff matrix corresponds to finding an entry that is the maximum in its column and the minimum in its row.  One way to accomplish this, which gives other useful information as well, is to identify the payoff matrix entry that is the maximum in each column (which would be Player A’s best pure strategy against each of Player B’s pure strategies) by writing in a subscript of “A” beside each such maximum.  Similarly, we can mark the minimum in each row with a superscript “B” (B’s best responses to A’s pure strategies).  Any entry that is then marked with both an “A” subscript and a “B” superscript is a Nash equilibrium.

Let’s show how this would work with the payoff matrix for Sample Problem 3:
	Payoff to A
	B1
	B2

	A1
	4A
	-1B

	A2
	1
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We see that the subscripts and superscripts reflect exactly our discussion as we evaluated whether or not there were any dominated strategies, and also now show us that there is indeed exactly one Nash equilibrium solution to this game.

Let’s now spell out a procedure for finding all pure strategy Nash equilibrium (minimax/maximin/saddle point) solutions to a 2-player competitive game:
	Payoff to A
	B1
	B2

	A1
	4A
	-1

	A2
	1
	0A


1) For each column of the payoff matrix, find the maximum value of the entries in the column, and label all entries that are equal to that maximum with a subscript “A” (A’s best responses to each of B’s strategies).
	Payoff to A
	B1
	B2

	A1
	4A
	-1B

	A2
	1
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2) For each row of the payoff matrix, find the minimum value of the entries in the row, and label all entries that are equal to that minimum with a superscript “B” (B’s best responses to each of A’s strategies).

	Payoff to A
	B1
	B2

	A1
	4A
	-1B

	A2
	1
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3) If any payoff matrix entries are labeled with both an “A” subscript and a “B” superscript, all such entries correspond to Nash equilibria
.

Sample Problem 4:  Consider the game with the payoff matrix given below:

	Payoff to A
	B1
	B2
	B3

	A1
	-3
	5
	0

	A2
	-5
	-2
	1

	A3
	4
	2
	1


What should each player do?


Solution:  Let’s first apply the successive conditional elimination procedure described above.  If you try, you will see that Player B has no dominated strategies, but row 3 is greater than or equal to row 2 everywhere, and strictly greater than it in 2 places, so  A3  dominates  A2  (but neither  A1  nor  A3  dominate each other), and we can cross out  A2  using solid lines:
	Payoff to A
	B1
	B2
	B3

	A1
	-3
	5
	0

	A2
	-5
	-2
	1

	A3
	4
	2
	1



Here is where we can now use the idea of conditional domination.  Nothing has changed for the rows for  A1  and  A3 , so neither dominates the other, as before.  But now that  A2  has been crossed out, looking only at the un-crossed columns, we now see that (only)  B3  conditionally dominates  B2  (remember that the columns correspond to B’s strategies, and that the payoff matrix entries are the payoffs to A, so smaller is better for B and the columns).  To denote this, we will use dashed lines to cross of the un-crossed entries in  B2 , the  5  and the  2 :
	Payoff to A
	B1
	B2
	B3

	A1
	-3
	5
	0

	A2
	-5
	-2
	1

	A3
	4
	2
	1


Now we are left with just a  2(2  matrix of uncrossed entries.  Neither column dominates the other, as above, but now looking at the new uncrossed rows, we see that  A3  conditionally dominates  A1 , so we will use dashed lines to cross off the uncrossed entries of  A1  (the  -3  and the  0 ):
	Payoff to A
	B1
	B2
	B3

	A1
	-3
	5
	0

	A2
	-5
	-2
	1

	A3
	4
	2
	1


Now we can see that Player A has only one remaining strategy:  to play  A3 .  Knowing this, Player B would choose  B3  over  B1  (a payoff to A of 1 vs. 4, meaning a loss to B of 1 vs. 4), which we could also describe as  B3  conditionally dominating  B1 , and could use dashed lines to cross off the 4:
	Payoff to A
	B1
	B2
	B3

	A1
	-3
	5
	0

	A2
	-5
	-2
	1

	A3
	4
	2
	1


Since we have gotten to the point where there is just one payoff matrix entry left un-crossed-off, that entry corresponds to the solution of our game:  Player A should play  A3 , Player B should play  B3 , and the resulting payoff to A will be a gain of 1 unit (so the payoff to B will be a loss of 1 unit).


Let’s try checking this solution to see if it is a Nash equilibrium (minimax solution).  Here is the marked-up payoff matrix:
	Payoff to A
	B1
	B2
	B3

	A1
	-3B
	5A
	0

	A2
	-5B
	-2
	1A

	A3
	4A
	2
	
[image: image4.wmf]B

A

1




Notice an interesting feature here: in the  B3  column, there was a tie for the maximum of 1, so both 1’s were labeled with an “A” subscript.  Notice that this is related to the fact that the Nash equilibrium is only a weak Nash equilibrium, not a strict Nash equilibrium.

Thus, we see that both approaches have given us the same unique solution.  ⁪
Mixed Strategies

Does a Nash equilibrium always exist?  On to the next Sample Problem!

Sample Problem 5:  Consider the game with the payoff matrix given below:

	Payoff to A
	B1
	B2

	A1
	2
	-4

	A2
	-1
	3


What should each player do?


Solution:  Let’s check first for dominated strategies.  There are none!  That means that successive conditional elimination won’t find a solution for us.  We can see clearly that the different strategy combinations are not all equivalent to each other, so we can’t say that every combination is a solution (this would be the case, however, if all of the payoff matrix entries were the same, for example).  Our only tool left is to try to find a Nash equilibrium.  Let’s create the marked-up matrix:

	Payoff to A
	B1
	B2

	A1
	2A
	-4B

	A2
	-1B
	3A


Interesting!  We see that there are no pure strategy Nash equilibria (of either kind) either!  Now what?  Let’s think about what properties we want a “solution” to a game to have.  Having the Nash equilibrium property is nice: we want a solution where, in some sense, either player would do worse by a unilateral change.  Another approach is to introduce the idea of possible repetitions of the game.  So far, we have assumed that the game would be played exactly once, and the solutions we have found make good sense for that situation.  What if we considered the possibility of playing an unlimited number of sequential repetitions of the game, so that we know the entire previous history of what both players have chosen at each previous iteration when making the decision for the next iteration?  Notice that with this interpretation, our earlier solutions still make sense, so we are being consistent.

For the moment, let’s assume that one player, let’s arbitrarily say it is Player B, has already picked a strategy in advance that they will apply at every iteration.  For example, one such strategy would be “always play B2”; another would be “first, play  B2 , then alternate between the two at every iteration”.  Suppose further that we are Player A, and have not fixed a strategy in advance, but are using all the information at our disposal of the past history to make each decision at each iteration.  We would have to pick something blindly for the first iteration, but then after that we could use the information to do the best we can for ourselves.

Let’s assume now that B has chosen the first strategy mentioned above: “always play    B2 ”.  If we were unlucky, we might have played  A1  in the first iteration, and would have lost  4  units.  Maybe we would have said to ourselves “Well, B played  B2  last time; maybe they’ll do it again…”, in which case we would have played  A2 .  If we thought B was likely to change for some reason, then we might have played  A1  in the second round, and lost 4 again.  But, hopefully, somewhere around round 3, we would have wised up that B was not changing (yet), and at least tried playing  A2 , and won 2 units.  And from that point on, we should have realized we were in Fat City, and let the winnings start rolling in…


Was “always play  B2 ” a smart strategy for Player B?  No way!  On average, in the long run, A’s (our!) winnings would approach 2 units per game (and should equal 2 if we took a mathematical limit), which is the second worst outcome for B in the payoff matrix.  Player B would at least hope that something strictly between 2 and  -1  might be possible; kind of a “compromise” solution if they tried to “talk it out” as in a negotiation, and could agree on a settlement without having to play the game.  If you are seeing how this relates to real-life lawyers, you start to see the practical importance of game theory (“playing the game” is analogous to going to court, and the negotiation would be like settling out of court).

What about the second strategy that we mentioned for B above: “first, play  B2 , then alternate”?  Once again, for the first 2 or 3 iterations, we (as Player A) might get unlucky, but after we see the pattern, we should be able to respond to our advantage, playing  A1  when we know that  B1  is coming next, and playing  A2  when we know  B2  is coming.  Thus eventually our winnings should alternate between gains of 2 and gains of 3, for an average in the long run of 2.5 units per game (even better than before!)!  This is clearly not a good idea for Player B!

What we want to figure out here is to determine what would be a good strategy for Player B to fix in advance, knowing that Player A (us) will be able to respond dynamically?  This is sometimes called Player B’s best nonsecret strategy.  It is “nonsecret” because Player A learns about it in the course of the iterations.  

Discovery Question:  What do the two examples above show you about what kind of property Player B would want this “best nonsecret strategy” to have?

Hint:  What did the two example strategies for Player B above have in common that made them so bad for Player B (and good for us, Player A)?

Answer:  The problem with those two strategies was that they were predictable.  Both followed a pattern that we, as Player A, could eventually figure out and counter perfectly.  Since those strategies were terrible for Player B, Player B wants a strategy as different from them as possible.  What is most different from being a predictable pattern?  
The furthest from a predictable pattern is randomness, virtually by definition.  The idea of a truly random sequence is that it is unpredictable.  Most calculators and computers generate values that act random and unpredictable, but are indeed generated from a very specific and predictable algorithm.  To someone who doesn’t know the algorithm, the sequence is close enough to being random that it is sufficient for the problem being solved.  In any case, the idea of an optimal strategy for Player B in the repeated iteration scenario we have described above is to choose some way of randomizing the choice between  B1  and  B2 .  For example, Player B could have their strategy be: “flip a coin for each iteration; if it is Heads, play  B1 , and if it is Tails, play  B2 ”.

If Player B played this random strategy, what would be our best response as Player A?  If we didn’t know that B was playing this random strategy, we might try to figure out the pattern in the  B1’s  and  B2’s  for a while, then realize that it was random (or close enough), and that each of B’s strategies were being played about an equal fraction of the time.  At that point, we could analyze the consequences of our playing our two strategies.  
If we played  A1  all the time, then about half the time we’d win 2 units (payoff of 2), and about half the time we’d lose 4 units (payoff of -4).  On average, then, every couple of games, our net payoff would be a loss of 2 units ( 2  +  -4  =  -2 ), so our average per game would be half of that, or a loss of 1 unit per game (payoff of -1).  By the same reasoning, if we played  A2   all the time, we would alternate between losing 1 unit and winning 3 units (payoffs of  -1  and 3 ), for a net gain of 2 units ( -1 + 3 = 2 ) every couple of games, and an average gain of 1 unit per game (payoff of  1 ).  Realizing that, we might as well play  A2  all of the time, for an average payoff of 1 unit per game.  Notice that this amount is in the “compromise solution” region that we discussed earlier, so would have some appeal both for us as Player A (since we are winning on average) and also for Player B, since it seems that this could be about as good as they can hope for (it’s certainly better than any kind of predictable pattern strategy, as we discussed above, when the average payoffs to Player A were always at least 2 units).

Now, flipping a coin is one way for Player B to randomize the choice between  B1  and  B2 .  A different possibility would be to roll a die (singular of “dice”), and then play  B1  if a 1 or 2 is rolled, and play  B2  otherwise (if a 3, 4, 5, or 6 is rolled).  Notice the difference from before: in the coin flip case, the two strategies were equally likely, but with the die,  B2  is twice as likely to be played as  B1 .  We are now entering the realm of probability theory.  In this case, we are dealing with discrete probability (see the link for finding the mean of a discrete random variable), where there are only a discrete number of possible outcomes.  We will not be developing the full theory of discrete probability here, but will present what we need to solve this problem.

In the most basic version of discrete probability, there are a finite number of possible different outcomes (like obtaining a  1 ) to some random experiment (like rolling a die).  A number between 0 and 1, called a probability, is assigned to each outcome in such a way that the sum of these probabilities (of all of the possible outcomes) is equal to 1.  As a consequence of these properties, if there are  n  different possible outcomes, and if they are all equally likely (like for a fair coin or die), then each outcome has a probability of  1/n .  The probability of any group of outcomes (called an event) is then the sum of the probabilities of the outcomes in the group.  Thus when there are  n  different possible outcomes and they are all equally likely, the probability of any group of outcomes is simply
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Based on these concepts (and intuitively), we can see that in Player B’s coin flip strategy, the probability of B playing  B1  is  ½ , and this is also true for  B2 .  In the die roll strategy, Player B will play  B1  when the die roll results in a 1 or a 2, which is 2 outcomes out of the 6 different possible equally-likely outcomes (assuming the die is fair), with a probability of  2/6 , or  1/3 .  Since  B2  is chosen the rest of the time, and the probabilities have to add up to 1, the probability of playing  B2  is  1 – 1/3 = 2/3  (or  4/6 = 2/3 , the probability of the other 4 outcomes).

Now that we can see that Player B has two different randomized strategies, let’s think about how we could describe all possible randomized strategies for Player B.  As you can probably see, what essentially describes different randomized strategies is to specify the probability of playing each pure strategy, so that they add up to 1.  This is called a mixed strategy in game theory.  If Player A has  m  different pure strategies and Player B has  n  pure strategies, the conventional notation is to let  x1  be the probability A plays  A1 ,  x2  be the probability A plays  A2 ,  etc., or in general

xi  =  the probability Player A plays pure strategy  Ai , for  i = 1,2,…,m
and, similarly,


yj  =  the probability Player B plays pure strategy  Bj , for  j = 1,2,…,n
We know that the  xi’s  must all be between 0 and 1, and must sum to 1, and the same must be true for the  yj’s .

Using this notation and terminology, we can now say that what we called Player B’s “coin flip” strategy was a mixed strategy with  y1 = ½  and  y2 = ½ .  What we could call Player B’s “die roll” strategy was a mixed strategy with  y1 = 1/3  and  y2 = 2/3 .

Remember that for Player B’s coin flip strategy, we actually calculated what Player A’s (our) overall average payoff would be if we played  A1 .  In this case, the calculation boiled down to


Average payoff to Player A  =  
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Notice that this calculation could also be rewritten in the form  

Average payoff to Player A  =  
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What would the calculation (the overall average payoff to A, us, if we always play  A1 ) look like if Player B was playing the die roll strategy?  This time the idea is that (eventually) roughly 1/3 of the time Player B would play  B1  and 2/3 of the time  B2 .  On average, every three rounds we would expect get a payoff of  2  once and  -4  twice, for an average of


Average payoff to Player A  =  
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Once again, this could be rewritten in the form

Average payoff to Player A  =  
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Can you see the pattern here?  Since we (Player A) are always playing  pure strategy  A1 , there are two possible payoff results to the game (from our perspective):  2  if Player B plays  B1  and  (-4)  if B plays  B2 .  The first result (payoff to A of 2) will occur if the die rolls a 1 or a 2, which has a probability of  y1 = 1/3 , and the second result (payoff to A of  -4 ) will occur if the die rolls anything else, which has a probability of  y2 = 2/3 .  The average, or expected payoff to A is then obtained by multiplying each possible payoff by the probability that it will occur, and adding the results.  Let’s formalize this idea.

A discrete random variable, usually denoted (as with continuous random variables) using a capital letter such as  X , assigns a value to every different outcome of a random experiment.  For example, continuing with Player B’s die roll strategy, and assuming that we (Player A) stick with pure strategy  A1 , we could define

X  =  the payoff to Player A from the game
This situation is a random experiment, since it depends on the roll of the die, and so we cannot know the result in advance of any particular instance (play of the game).  The way we have defined things,  X  would assign the value of  2  to the outcomes 1 and 2, and assign the value of  (-4)  to the outcomes 3, 4, 5, and 6 .


As a result of these definitions, every different possible discrete value of the random variable has a probability associated with it (the sum of the probabilities of the outcomes that are assigned to that random variable value).  As before, these probabilities are each between 0 and 1, and they all add up to 1.  The probability that  X  is equal to the value  a  we will denote with  P(X = a ) .  In our example, we could write


P(X = 2) = 1/3   and   P(X = -4 ) = 2/3

Let us assume that a discrete random variable  X  has  n  discrete values ( x1 , x2 , …, xn ).  Based upon what we observed above, we can define the expected value (the mean, or average, as discussed in the link for finding the mean) of a discrete random variable  X , denoted by  E(X) , to be given by the formula (see the link for the sigma notation)

“The expected value of  X ”  =  E(X)  =  x1(P(X = x1) + x2(P(X = x2) + … + xn(P(X = xn)





        =  
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Notice that if the  n  different values are equally likely, then all of the probabilities are  1/n , and the formula corresponds to adding the  xi  values and dividing by  n , which is the basic average or mean of those values.  Notice also the similarity of the above formula to the formula for the mean of a continuous random variable (see the link for this):

Mean = 
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You can think of the  f (x)dx  as analogous to the  P(X = xi) ,  x  as analogous to  xi , and the integral as analogous to the sigma (summation sign).


Using this formula, then, we see that the expected payoff to Player A (us) if we play  A1  and Player B plays the die roll strategy is given by


E(X) = (2)(1/3) + (-4)(2/3) = (2/3) + (-8/3) = -6/3 = -2 ,

exactly as we saw before.  

Finding Mixed-Strategy Nash Equilibrium Solutions Graphically
Recall that we said that the probabilities in this expression could also be denoted by  y1  (for the 1/3) and  y2  (for the 2/3).  If we now generalize the above calculation for the situation where Player B plays  B1  with probability  y1  and  B2  with probability  y2 , and we as Player A continue to stick with pure strategy  A1 , then the expected payoff to A (us) would be given by 

Expected payoff to A using  A1  =  2y1 + (-4)y2 .

What would be the analogous expected payoff to A (us) if we played the pure strategy  A2  instead of  A1 , assuming that Player B is still playing the mixed strategy defined by  y1  and  y2 ?  Hopefully you can see that this is the same as before, but the payoffs change from  2  and    (-4)  to  (-1)  and  3 , respectively (corresponding to B playing  B1  and  B2 , respectively).  Thus the expected payoff to A is given by

Expected payoff to A using  A2  =  (-1)y1 + (3)y2 .

For the coin flip strategy ( y1  and  y2  both ½ ), we already did the calculations, and saw that  A1  yielded an expected payoff of  -1 , while  A2  yielded  +1 , so  A2  was clearly better for us.  Let’s do the same analysis for all of B’s possible mixed strategies, which boils down to all possible values of  y1  between 0 and 1.  To simplify the analysis, remember that  y1  and  y2  have to sum to 1, so we know that


y2 = 1 – y1  .

We can now make this substitution into the formulas we found earlier:


Expected payoff to A using  A1  =  2y1 + (-4)y2  =  2y1 + (-4)((1-y1)  =  2y1 + (-4) + 4y1 





    =  6y1 - 4

Expected payoff to A using  A2  =  (-1)y1 + (3)y2  =  (-1)y1 + (3)((1-y1)  =  -y1 + 3 + (-3)y1





    =  3 - 4y1 
If we know the value of  y1  (and in the repeated version of the game, we could get better and better estimates over time), how can we decide our (Player A’s) best response?  This is especially easy to understand if we sketch a graph of the two expected payoff expressions above, as shown in Figure 1:

[image: image12.emf]Results of A's Strategies If B Plays Mixed 

Strategy Defined by  y

1

-5

-4

-3

-2

-1

0

1

2

3

4

0 0.2 0.4 0.6 0.8 1

y

1

Expected Payoff to A   A

A

2

A

1


Figure 1
Notice that when  y1 = ½  (the coin flip strategy), the payoff to A (us) is  -1  for  A1  and  1  for  A2  (you can verify by plugging into the expressions derived above), as we found before, and so  A2  is our better choice as Player A.  From the graph, we can see that for any value of  y1  smaller than that (to the left of 0.5),  A2  will also be the better choice.  But when  y1 = 1  (B plays  B1  all the time), we can see from the original payoff matrix that we as Player A are better off with  A1 , for a payoff to A (us) of 2 units.  For any given value of  y1 , we simply see which line is higher, since that means there is a bigger payoff to A (us).  If we darken the points corresponding to those maximum points for each value of  y1  between 0 and 1, the resulting graph is shown in Figure 2:
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Figure 2
This graph is sometimes called the upper envelope of the individual pure strategy lines.

OK, let’s review where we stand right now.  We saw that the original game had no Nash equilibria, and realized that this reality suggested that a randomized (mixed) strategy would work best.  For Player B, any possible mixed strategy is defined by a value of  y1  (the probability of playing  B1 ) between 0 and 1, and the probability of playing  B2  will be  1 - y1 .  Given those different possible values of  y1 , we have just seen what our best choices as Player A would be in response.  So Player B has to decide what value of  y1  to choose.  Since Player B gets the negative of the payoff to A, Player B wants to minimize the expected payoff to A.  In other words, Player B wants to find the lowest point on the upper envelope graph.  Notice that this is a minimum of a maximum, so can also be called a minimax solution, analogous to the way that the pure strategy Nash equilibrium was a minimax solution.  The minimum point (optimal choice of  y1  for B) is circled in Figure 3 below:
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Figure 3

How do we find the minimum point?  Well, we can see that it is at the intersection of the  A1  line and the  A2  line.  How do we find where the two lines intersect?  That is where their values are equal, so we can set the two expressions obtained earlier equal to each other, and solve for  y1 , as follows:
6y1 - 4  =  3 - 4y1 

(setting expressions for  A1  and  A2  equal to each other)
10y1  =  7


(adding  4+4y1  to both sides)
y1  =  7/10  =  0.7

(dividing both sides by 10)

Thus we see that Player B’s optimal strategy is a mixed (randomized) strategy: play pure strategy  B1  with a probability of  0.7 , and  B2  with a probability of  1 – 0.7 = 0.3 .  In practice, how could this be done?  The simplest way would be to make a wheel marked from 0 to 1 (0 and 1 would be the same point, and the tenths could be marked off equally around the perimeter) that can be spun (as on the TV show Wheel of Fortune), and fix a pointer on the side.  If the pointer falls between 0 and 0.7 , then Player B would play  B1 ; otherwise,  B2  would be played.

What result can Player B expect from this strategy?  If Player A plays  A1 , we know the expression for the expected payoff to A is  6y1 - 4 , so we can now plug in  0.7  for  y1  and work out the result:


Expected payoff to A using  A1  =  6y1 – 4  =  6(0.7) – 4  =  4.2 – 4  =  0.2 .

We can do the same for  A2 :


Expected payoff to A using  A2  =  3 - 4y1  =  3 – 4(0.7)  =  3 – 2.8  =  0.2 .
In other words, whichever pure strategy Player A plays, if Player B plays the optimal mixed strategy defined by  y1 = 0.7 , the expected payoff to A is  0.2 , so Player B can expect to lose  0.2  units in the game.  This is again in line with the “compromise solution” idea we discussed above, and significantly better than the non-randomized strategies we looked at earlier.

What about us, as Player A?  If you think about it, most of what we just developed could be applied equally well to find an optimal strategy for A, just keeping in mind that we as A want to maximize the expected payoff to A (ourselves).  Similar to what we did for Player B, let’s define

x1  =  the probability player A plays strategy  A1 


x2  =  the probability player A plays strategy  A2  =  1 – x1
To help in formulating the expected payoff expressions, let’s look again at the payoff matrix, with the mixed strategy probability variables written in:
	
	
	y1
	y2

	
	Payoff to A
	B1
	B2

	x1
	A1
	2A
	-4B

	x2
	A2
	-1B
	3A


The expressions we got before were:

Expected payoff to A from A using  A1 :  (2)y1 + (-4)y2  


Expected payoff to A from A using  A2 :  (-1)y1 + (3)y2  
Notice the nice pattern this follows, based on the annotated table above.  By analogy, you can probably see that the corresponding equations involving  x1  and  x2  would be:

Expected payoff to A from B using  B1 :  (2)x1 + (-1)x2  


Expected payoff to A from B using  B2 :  (-4)x1 + (3)x2  
Putting these just in terms of  x1 , we get:

B1 :  (2)x1 + (-1)x2  =  2x1 + (-1)(1-x1)  =  2x1 – 1 + x1  =  3x1 – 1   


B2 :  (-4)x1 + (3)x2  =  -4x1 + 3(1-x1)  =  -4x1 + 3 – 3x1  =  3 – 7x1  
These are graphed in Figure 4 below:
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Figure 4
This time, it is Player B making the choice of which pure strategy to use, and since the results (second coordinate) of each expression is the expected payoff to Player A still, Player B wants to choose the lowest value for each possible value of  x1 .  Just to do a quick check, notice that if    x1 = 1 , which means that Player A plays pure strategy  A1 , then Player B playing  B1  would yield a payoff to A of  2  and playing  B2  would yield a payoff to A of  -4 , as can also be seen from the original payoff matrix.  The best choice for Player B in this case is clearly  B2 , where Player A loses 4 (and so Player B wins 4).  Thus, whereas Player A’s best choices were the upper envelope of A’s strategy line graphs, Player B’s best choices will be the lower envelope of B’s strategy line graphs.  This is shown in Figure 5 below:
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Figure 5
Now, since it is Player A choosing the best value of  x1 , and the payoffs are expressed in terms of Player A, A’s optimal value of  x1  will be the maximum of the lower envelope graph.  This is shown in Figure 6 below:
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Figure 6
This time, the solution is the maximum of a minimum, or a maximin solution, again analogous to a saddle point.  

Let’s do the calculations to find the exact optimal value of  x1 .  As before, we see the intersection corresponding to the maximum, so we set the expressions for those two lines equal to each other and solve for  x1 :

3x1 - 1  =  3 - 7x1 

(setting expressions for  B1  and  B2  equal to each other)
10x1  =  4


(adding  1+7x1  to both sides)
x1  =  4/10  =  2/5  =  0.4
(dividing both sides by 10),
exactly as the graph seems to show.

What would be the result if Player A uses this optimal mixed strategy?  Again we can plug into the expressions to see 

Expected payoff to A from B using  B1 :  3x1 – 1  =  3(0.4) – 1  =  1.2 – 1  =  0.2 


Expected payoff to A from B using  B2 :  3 – 7x1  =  3 – 7(0.4)  =  3 – 2.8  =  0.2  
So whichever pure strategy B plays, Player A can expect to win  0.2  units using the optimal mixed strategy defined by  x1 = 0.4 .  Notice that this also agrees with what Player B expects to win with their optimal mixed strategy!  So we have two optimal solutions that are consistent with each other and compatible, away from which neither player would want to move unilaterally.  It can be shown mathematically that this solution is indeed a Nash equilibrium when we consider all of the possible mixed strategies, so it is often referred to as a mixed-strategy Nash equilibrium/saddle point/minimax/maximin solution.  Based on the method we used to get the solutions, you may able to see intuitively that in fact every 2-player competitive game has a Nash equilibrium, in mixed strategies if not in pure strategies.  This can be proven mathematically.  ⁪
Using Linear Programming and Technology to Find Mixed-Strategy Nash Equlibirium Solutions


If you think about what we have done, it depended somewhat on each player only having two pure strategies.  The same approach could even work with three strategies each: the graphs would be 3-D, and the upper and lower envelopes would be like pieces of polyhedra, but it is at least theoretically possible.  For more strategies, though, we need to come up with a different way to find the mixed strategy Nash equilibrium.  Let’s see if we can formulate the problem we just solved to help Player A find the optimal mixed strategy.  To do this, it is convenient to define a variable representing the expected payoff to A of the game, or the expected value of the game.  In the game theory literature, the variable usually used for this is the Greek letter  (  (pronounced “new”), so let us define

(  =  the expected payoff to A  .


If you look at Figure 6 , you might realize that we could think of the problem as a linear program, where the feasible region is all of the points below all of the lines corresponding to B’s pure strategies, and the objective function is just a horizontal line, which we want to be as high as possible.  That horizontal line is just the expected value of the game,  ( , so we are really trying to maximize  (  subject to the restriction that  (  can never be more than the expected payoff of any of Player B’s individual pure strategies (so it must be on or below all of them).  Being on or below all of the lines corresponds to our finding of the lower envelope, the fact that Player B will always choose the pure strategy that gives Player A the lowest payoff.  Even though our feasible region is allowing values strictly below the lower envelope, by taking the maximum of  ( , we guarantee that our optimal solution will in fact be along the lower envelope, and so we will get the same answer that we did before.  As we mentioned earlier, we will also require that the probabilities of playing each pure strategy all be nonnegative, and that they add up to 1.

Thus, our formulation of Player A’s problem is to


Maximize  (  



(maximize the expected payoff to A)

Subject to:  
(  (  2x1 – x2  

(payoff no more than when B plays B1 )



(  (  -4x1 + 3x2  
(payoff no more than when B plays B2 )



x1 + x2  =  1

(probabilities sum to 1)



x1, x2 ( 0

(probabilities nonnegative)

Notice that we have not substituted  x2 = 1-x1 , because without the substitution, the formulation follows the payoff matrix perfectly and is much simpler.  If we are solving the problem with technology, there is no need to try to cut down the number of variables by substitution, but to solve it graphically this was very important.  Notice also that the coefficients in each constraint for A’s problem correspond to the columns of the payoff matrix, since they are associated with  x1  and  x2  (and each of B’s pure strategies).
	
	
	y1
	y2

	
	Payoff to A
	B1
	B2

	x1
	A1
	2A
	-4B

	x2
	A2
	-1B
	3A


And, finally, notice that this problem is a linear program, as discussed at the link for that topic.
Having done this, you can probably see what the analogous formulation is going to be for Player B to find his/her optimal mixed strategy.  Since the decision is from Player B’s perspective, and  (  is the expected payoff to A, Player B wants to minimize the expected payoff to A.  And, looking back at Figure 3, we see that for this case, the feasible region is everything above the individual strategy lines of A, so we want  (  greater than or equal to the expected payoff from each of A’s pure strategies.  Thus the formulation of Player B’s problem is given by
Minimize  (  



(minimize the expected payoff to A)


Subject to:  
(  (  2y1 – 4y2  
(payoff no less than when A plays A1 )



(  (  -y1 + 3y2  
(payoff no less than when A plays A2 )



y1 + y2  =  1

(probabilities sum to 1)




y1, y2 ( 0

(probabilities nonnegative)

Again, this problem is a linear program, very similar to Player A’s problem, but the coefficients of each constraint of B’s problem correspond to the rows of the payoff matrix this time, and the directions have been reversed (maximize to minimize, and the type of inequality for the main/structural constraints).

Notice also that all of the  x  and  y  variables in the two problems are nonnegative, but  (  does not have to be nonnegative (is unrestricted in sign).  If you want to solve either of these problems, you need to be aware of whether or not the method you are using assumes that all of the variables have to be nonnegative.  If the method you are using assumes this, and you do nothing about it, you may still get the correct answer if you are lucky (as would happen in our example, since the optimal value of  (  was positive (0.2).  But if the correct answer were negative, you would not get the correct answer.  Some methods may also require you to put the constraints in standard form (all variable terms on the left hand side, and only a constant on the right).  
In Wolfram Alpha, it is possible to solve this problem easily, since it does not assume that all variables must be nonnegative (although it allows you to force that to be true if you want), and the constraints can be entered as above.  For Player A’s problem, this would be written as shown below:
maximize[ {v, {v<=2x1-x2 && v<=-4x1+3x2 && x1+x2=1 && x1>=0 && x2>=0 } }, {v,x1,x2} ]
It is interesting to also look at the solution, shown in Figure 8:
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Figure 8
Figure 9 shows that we could get Player B’s solution in the same way:
minimize[{v,{v>=2y1-4y2 && v>=-y1+3y2 && y1+y2=1 && y1>=0 && y2>=0}},{v,y1,y2} ]
Input interpretation:
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Figure 9

We are now ready to specify a procedure for solving 2-player competitive games:
1) Cross of any strategies for either player that are dominated by another strategy (where one row or column is uniformly ( or ( another and not identical) using solid lines.
2) Looking at only the un-crossed-off entries in the payoff matrix, see if any strategies for either player are conditionally dominated by another, and cross any such strategies off using dashed lines

3) Repeat Step (2) until no more conditionally dominated strategies exist

4) If there is only one remaining entry that is not crossed off in the payoff matrix (or more than one that are the same value), that corresponds to the solution(s) of the game

5) If you have not found the solution(s) yet, apply the procedure to find pure strategy Nash equilibria described earlier.  

a) For each column of the payoff matrix, find the maximum value of the entries in the column, and label all entries that are equal to that maximum with a subscript “A” (A’s best responses to each of B’s strategies).

b) For each row of the payoff matrix, find the minimum value of the entries in the row, and label all entries that are equal to that minimum with a superscript “B” (B’s best responses to each of A’s strategies).

c) If any payoff matrix entries are labeled with both an “A” subscript and a “B” superscript, all such entries correspond to Nash equilibria.

If you find any such solutions, you have the solution(s) to the game.
6) If there are no pure strategy Nash equilibria, write out the formulation for Player A using one of the two forms above, and solve it using technology.  You can write out Player B’s problem and solve it using technology in the same way.
Sample Problem 6:  For the game Rock/Paper/Scissors, find the optimal strategy for both players.

Solution:  In Sample Problem 1, we have already determined that the payoff matrix is given by:

	Payoff to A
	B1:Rock
	B2:Paper
	B3:Scissors

	A1:Rock
	0
	-1
	1

	A2:Paper
	1
	0
	-1

	A3:Scissors
	-1
	1
	0



If you examine this matrix, you will first see that no strategies are dominated by any others for either player, so we will not be able to find a solution by successive conditional elimination.  Let’s now check for pure strategy Nash equilibria by marking the matrix with A’s and B’s:

	Payoff to A
	B1: Rock
	B2: Paper
	B3: Scissors

	A1: Rock
	0
	-1B
	1A

	A2: Paper
	1A
	0
	-1B

	A3: Scissors
	-1B
	1A
	0


This also does not give us a solution, so we must move on to formulate the problem as a linear program.  Let’s mark the probability variables for each player on the matrix first:
	
	
	y1
	y2
	y3

	
	Payoff to A
	B1: Rock
	B2: Paper
	B3: Scissors

	x1
	A1: Rock
	0
	-1
	1

	x2
	A2: Paper
	1
	0
	-1

	x3
	A3: Scissors
	-1
	1
	0


The formulation from Player A’s point of view is then:


Maximize  (  






Subject to:  
(  (  x2 – x3  





(  (  -x1 + x3  





(  (  x1 - x2  





x1 + x2 + x3  =  1






x1, x2 , x3 ( 0



The Wolfram Alpha solution is given in Figure 10 below:
maximize[{v,{v<=x2-x3 & v<=-x1+x3 && v<=x1-x2 && x1+x2+x3=1 &&
 x1>=0 && x2>=0 && x3>=0}},{v,x1,x2,x3} ]
Input interpretation:
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Global maximum:
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Figure 10
We see that the solution is for Player A to use a randomized mixed strategy in which each pure strategy is played with an equal probability of  1/3 , and the expected payoff to A is 0 (rounded to 3 decimal places).  Let’s look at the Wolfram Alpha solution with the optimal strategy for Player B, shown below in Figure 11:
minimize[{v,{v>=-y2+y3 & v>=y1-y3 & v>=-y1+y2 & y1+y2+y3=1 & y1>=0 & y2>=0 & y3>=0}},{v,y1,y2,y3} ]
Input interpretation:
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Global minimum:
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Figure 11
This shows that the optimal strategy for Player B is also to play each pure strategy with a probability of  1/3 , and once again that the expected value of the game (the expected payoff to A) is 0 .  ⁪

Sample Problem 7:  Suppose that you like to play tennis with your friend Jean-Marc.  You realize that the situation comes up frequently where you charge the net, and he always tries to hit a deep ground stroke either right up the middle, to your left, or to your right.  You are always faced with the choice of staying in the middle, moving to your left, or moving to your right (to try to anticipate what he will do).  From past experience, you estimate what your eventual probability of winning the point will be (and you think that Jean-Marc would essentially agree to these estimates) as given in the payoff matrix below:
	Probability you eventually win the point
	J-M Aims Left
	J-M Aims Middle
	J-M Aims Right

	You Move Left
	0.7
	0.8
	0.4

	You Stay in the Middle
	0.3
	0.6
	0.7

	You Move Right
	0.1
	0.5
	0.9


What should you do?


Solution:  Before you jump into the analysis, you need to remember that everything we have done in the way of analyzing 2-player competitive games so far has been for zero-sum games, and you need to make sure a particular problem fits that structure before proceeding (or adjust your analysis).  Clearly, from an intuitive perspective, this is a “competitive game”.  Only one player can win each point.  But, for example, if both you and Jean-Marc go Left, and your probability of winning the point is  0.7 , does this mean that Jean-Marc’s probability is  -0.7 ?  Of course not!  We know that probabilities must be between 0 and 1.  Of course, if your probability of winning is  0.7  (70%), then Jean-Marc’s probability of winning will be 30%, or  0.3  (since if you don’t win the point, he will).  In other words, whatever your probability of winning is for a particular combination (pair) of pure strategies in the matrix, his probability of winning will be one minus yours.  Put differently, the sum of your two probabilities will always be one.  This is what is meant by a constant-sum (as opposed to a zero sum) game.  There is a simple way to transform a constant sum game into a zero sum game:  express the payoffs as the amount over one-half of the game’s constant sum that Player A will receive from each strategy combination.  For this problem, that means we want to express the payoffs in the payoff matrix as the amount by which your probability of eventually winning the game exceeds  0.5 .  Let’s see what that looks like:
	Probability over 0.5 you win 
	J-M Aims Left
	J-M Aims Middle
	J-M Aims Right

	You Move Left
	0.2
	0.3
	-0.1

	You Stay in the Middle
	-0.2
	0.1
	0.2

	You Move Right
	-0.4
	0
	0.4


Now we can go ahead and use the methods of analysis that we have learned.  Let’s first check for dominated strategies.  If you check, you will see that the first column is uniformly strictly less than the second column.  This is from Jean-Marc (Player B)’s perspective, so he wants your (Player A’s) probability of winning to be low, and therefore the second column is dominated by the first, and we can cross it off with solid lines:
	Probability over 0.5 you (A) win(s) 
	B1: J-M Left
	B2: J-M Middle
	B3: J-M Right

	A1: You Left
	0.2
	0.3
	-0.1

	A2: You Middle
	-0.2
	0.1
	0.2

	A3: You Right
	-0.4
	0
	0.4


Upon further checking, you should see that there are no other dominated strategies, nor any conditional dominated strategies, so we will not get a solution from successive elimination of conditional dominated strategies.  Note that Jean-Marc (Player B) now only has two remaining strategies, however, and we could use the graphical approach to find his optimal strategy if we wanted to.  In fact, one of Exercises asks you to do this.  For now, let’s check for pure strategy Nash equilibria:
	Probability over 0.5 you (A) win(s) 
	B1: J-M Left
	B2: J-M Middle
	B3: J-M Right

	A1: You Left
	0.2A
	0.3A
	-0.1B

	A2: You Middle
	-0.2B
	0.1
	0.2

	A3: You Right
	-0.4B
	0
	0.4A


We see that there are no pure strategy Nash equilibria, so we can now formulate our problem as a linear program:


Maximize  (  
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Using Wolfram alpha, we obtain the solution shown in Figure 12 below:

maximize[{v,{v<=0.2x1-0.2x2-0.4x3 && v<=0.3x1+0.1x2 && v<=-0.1x1+0.2x2+0.4x3 && x1+x2+x3=1 && x1>=0 && x2>=0 && x3>=0}},{v,x1,x2,x3} ]
Input interpretation:
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Global maximum:
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Figure 12
This solution says that  x1 ( 0.73 ,  x2 = 0 , and  x3 ( 0.27 .  This means that, when you charge the net, you should go Left about 73% of the time (actually 8 out of 11 times, to be precise), but since your payoff matrix probability estimates were rough anyway, it essentially means you want to move Left roughly 2/3 to ¾ of the time.  It also clearly says that you should not stay in the Middle, so the rest of the time (27%, or roughly 1 out of 3 or 4 times) you should move Right.

The question didn’t ask for it, but let’s see what the Wolfram Alpha solution says Jean-Marc should do.  The solution is shown in Figure 13 below:

minimize[{v,{v>=0.2y1+0.3y2-0.1y3 && v>=-0.2y1+0.1y2+0.2y3 && v>=-0.4y1+0.4y3 && y1+y2+y3=1 && y1>=0 && y2>=0 && y3>=0}},{v,y1,y2,y3} ]
Input interpretation:
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Global minimum:
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Figure 13
This says that Jean-Marc should go Left about 45% of the time (a little less than half of the time) and Right the rest of the time (about 55% of the time).  He should never aim his shot in the Middle.  ⁪
Summary

Before trying the Exercises, be sure that you:

· Understand what is meant by a 2-player competitive game, and how to recognize whether a problem fits that structure

· Know how to generate and interpret the payoff matrix for a zero sum game, and know that the payoffs are by convention the payoffs to Player A (the one whose strategies correspond to the rows of the matrix), and that the payoffs to Player B (the column strategies) are the negative (opposite) of those of Player A in the matrix
· Know the difference between a zero sum game and a constant sum game, and how to transform a constant sum game into a zero sum game by subtracting ½ the constant sum from each payoff

· Know the difference between pure and mixed (randomized) strategies

· Understand that pure strategies can be single actions or complex conditional specifications of actions that make it clear what a player would do under any possible circumstances

· Know what it means for one pure strategy to be dominated by another, and how to recognize this situation from the payoff matrix
· Understand what is meant by one pure strategy being conditionally dominated by another (dominated after removing certain pure strategies because they were dominated in some way by another)

· Know how to apply the method of successive conditional elimination of dominated strategies to try to find the solution of a game (crossing off dominated and conditionally dominated pure strategies, hopefully until only one matrix entry is left)

· Understand that a pure strategy Nash equilibrium is a solution to a game (combination/pair of pure strategies) from which neither player would want to switch strategies unilaterally (while the other stayed put)
· Know how to find pure strategy Nash equilibria, if any exist, from a payoff matrix, by marking the maximum in each column with “A” and the minimum in each row with “B” (if there are ties in either case, mark all such values), and realizing that any entry/solution marked with both is a Nash equilibrium

· Understand why a pure strategy Nash equilibrium solution is also called a minimax, maximin, or a saddle point solution (since it is a maximum in its column and a minimum in its row)

· Understand the basic reasoning behind why, if a game has no pure strategy Nash equilibria, both players will want to play mixed (randomized) strategies

· Understand that in discrete probability, probabilities (between 0 and 1, summing to 1) are assigned to each different possible outcome of a random experiment, and that the probability of an event (a group of outcomes) is the sum of the probabilities of the outcomes in the group

· Understand that the expected value (the average or mean) is the sum of the results of multiplying each possible value of the random variable times its probability:               E(X)  =  x1(P(X = x1) + x2(P(X = x2) + … + xn(P(X = xn)  =  
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· Understand, in the situation where no pure strategy Nash equilibria exist and one player has only 2 undominated strategies (of either kind), the logic behind the graphical method for finding their optimal mixed strategy (graph the expected payoff to A for each of the 2 strategies, show which would be chosen for each probability choice by shading the upper or lower envelope, then indicate the best of these, which will be the low or high point)
· Know how to formulate a 2-player competitive game as a linear program (for A: maximize the expected payoff to A, so that the expected payoff is ( the expected payoff from each of B’s strategies, one constraint for each column of the payoff matrix, the sum of the probabilities must be 1, and each probability must be nonnegative; for B: minimize the expected payoff to A, so that the expected payoff is ≥ the expected payoff from each of A’s strategies, one constraint for each row of the payoff matrix, the sum of the probabilities must be 1, and each probability must be nonnegative)

· Know how to solve the LP formulation of a game using technology
EXERCISES:
Warm Up
1.  Find any dominated strategies (and say what strategy each is dominated by) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3

	A1
	-2
	1
	-5

	A2
	4
	-1
	3

	A3
	-2
	3
	-4


2. Find any dominated strategies (and say what strategy each is dominated by) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3

	A1
	-4
	3
	-1

	A2
	-1
	0
	-3

	A3
	1
	2
	-1


3. Find any dominated strategies (and say what strategy each is dominated by) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-2
	1
	2
	4

	A2
	-3
	1
	-1
	2

	A3
	4
	-1
	-3
	-1


4. Find any dominated strategies (and say what strategy each is dominated by) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-4
	3
	-1
	1

	A2
	1
	-2
	0
	-3

	A3
	2
	-1
	2
	-2


5. See if you can find a solution using the method of successive conditional elimination (show your work) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3

	A1
	2
	-2
	4

	A2
	1
	-3
	5

	A3
	-4
	-2
	5


6. See if you can find a solution using the method of successive conditional elimination (show your work) for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3

	A1
	1
	2
	0

	A2
	-1
	-1
	0

	A3
	-3
	0
	-2


7. See if you can find a solution using the method of successive conditional elimination (show your work) for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-2
	1
	2
	4

	A2
	-3
	1
	-1
	2

	A3
	4
	1
	4
	-1


8. See if you can find a solution using the method of successive conditional elimination (show your work) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-4
	3
	-1
	1

	A2
	1
	-2
	0
	-3

	A3
	2
	-1
	2
	-2


9. Determine if any Nash equilibria exist (and show your work) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3

	A1
	2
	-2
	4

	A2
	1
	-3
	5

	A3
	-4
	-2
	5


10. Determine if any Nash equilibria exist (and show your work) for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3

	A1
	1
	2
	0

	A2
	-1
	-1
	0

	A3
	-3
	0
	-2


11. Determine if any Nash equilibria exist (and show your work) for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3
	B4

	A1
	6
	0
	-1
	2

	A2
	2
	1
	3
	4

	A3
	-1
	-2
	5
	-1


12. Determine if any Nash equilibria exist (and show your work) for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-4
	3
	-1
	1

	A2
	1
	-2
	0
	-3

	A3
	2
	-1
	2
	-2


13. For the random experiment of rolling one die, what is the probability of rolling a number greater than or equal to 5?

14. For the random experiment of rolling one die, what is the probability of rolling an odd number?

15. For the random experiment of rolling one die, what is the expected value of the random variable whose value is just the value that is rolled?

16. For the random experiment of rolling one die, what is the expected value of the random variable whose value is twice the value that is rolled?

17. Formulate as a linear program (with  (  unrestricted in sign) Player A’s problem for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3

	A1
	-4
	3
	-1

	A2
	-1
	0
	-3

	A3
	1
	2
	-1


18. Formulate as a linear program (with  (  unrestricted in sign) Player B’s problem for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-4
	3
	-1
	1

	A2
	1
	-2
	0
	-3

	A3
	2
	-1
	2
	-2


19. Formulate as a linear program Player A’s problem for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3

	A1
	2
	-2
	4

	A2
	1
	-3
	5

	A3
	-4
	-2
	5


20. Formulate as a linear program Player B’s problem for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3
	B4

	A1
	6
	0
	-1
	2

	A2
	2
	1
	3
	4

	A3
	-1
	-2
	5
	-1


21.  Formulate as a linear program (with  (  unrestricted in sign) and solve using technology Player A’s problem for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3

	A1
	-2
	1
	-5

	A2
	4
	-1
	3

	A3
	-2
	3
	-4


22.  Formulate as a linear program (with  (  unrestricted in sign) and solve using technology Player B’s problem for the game with the payoff matrix given by  
	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-2
	1
	2
	4

	A2
	-3
	1
	-1
	2

	A3
	4
	-1
	-3
	-1


23.  Formulate as a linear program and solve using technology Player A’s problem for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3

	A1
	1
	2
	0

	A2
	-1
	-1
	0

	A3
	-3
	0
	-2


24.  Formulate as a linear program and solve using technology Player B’s problem for the game with the payoff matrix given by  

	Payoff to A
	B1
	B2
	B3
	B4

	A1
	-4
	3
	-1
	1

	A2
	1
	-2
	0
	-3

	A3
	2
	-1
	2
	-2


Game Time
25.  You are the coach of a men’s basketball team (A), and are deciding a defensive strategy for the current quarter of the game against a team you know quite well (B).  The other team has three main offensive strategies: playing aggressively and going in for layups, stalling and going for 3-pointers, and feeding their star player under the basket.  You are considering three main defensive strategies: a zone defense, a man-to-man defense, and double-teaming their star player.  You estimate the following payoff matrix for the different combinations of these strategies, where the payoffs are the number of points saved (the decrease in the number of points scored against you) compared to the average number of points you’ve given away to this team in one quarter in the past:
	Payoff to A (points saved by your team)
	B1 (aggressive)
	B2 (stall)
	B3 (feed star)

	A1 (zone)
	1
	1
	-5

	A2 (man-to-man)
	4
	2
	-2

	A3 (double-team star)
	-6
	-1
	7


a) Are any strategies dominated by any other strategies for either player (team)?  If so, state which strategies are dominated by which other strategies.
b) Is there a Nash equilibrium for this game?  If so, what is it?

c) Formulate the problem from your (team A) perspective as a linear program (with  (  unrestricted in sign), and solve it using technology.
26.  You are a football coach, and are about to call your next offensive play for your team (A).  You are considering three options: a running play, a short pass, and a long bomb pass.  You believe the opposing team (B) is also considering three options: a blitz, their standard defense, and double-covering your star receiver.  You believe that the consequences of each combination of strategies are given by the payoffs in the matrix below, where the payoffs represent your expected number of yards gained on the play:
	Payoff to A (expected yards gained)
	B1 (blitz)
	B2 (standard)
	B3 (double-cover star)

	A1 (run)
	-1
	2
	6

	A2 (short pass)
	3
	8
	2

	A3 (long pass)
	-5
	15
	7


a) Are any strategies dominated by any other strategies for either player (team)?  If so, state which strategies are dominated by which other strategies.

b) Is there a Nash equilibrium for this game?  If so, what is it?

c) Formulate the problem from your (team A) perspective as a linear program (with nonnegativity restrictions on all of the variables, including for the game payoff), and solve it using technology.

27.  You work for a company that has two divisions.  Your division (A) has to decide a strategy for your budget request for next year.  The Board has already established that there will be no increase in the overall budget (for both divisions together).  Any increase in your budget from this year’s level will be a decrease in the budget of the other division (B).  You consider that both divisions have three basic strategies for your budget request: the status quo, a modest increase, and an ambitious increase, and you have a pretty good idea of what each would look like for both divisions.  Knowing the politics of the organization, you believe that the consequences of each combination of strategies are given in the following payoff matrix, where the payoffs are the expected increase in your budget (division A) for next year, in millions of dollars:
	Payoff to A (expected budget increase)
	B1 (status quo)
	B2 (modest)
	B3 (ambitious)

	A1 (status quo)
	1
	-1
	-2

	A2 (modest)
	2
	2
	4

	A3 (ambitious)
	4
	-5
	1


a) Are any strategies dominated by any other strategies for either player (division)?  If so, state which strategies are dominated by which other strategies.

b) See if you can find a solution using the method of successive conditional elimination (show your work) for the game.

c) Is there a Nash equilibrium for this game?  If so, what is it?

28.  You are a baseball pitcher, there are 2 outs in the bottom of the last inning, your team is ahead by 1 run, there is a runner on second, and the count on the batter is 3 balls, 2 strikes.  You (A) are deciding what pitch to throw: a fastball, a curve, or a change-up.  You believe the batter is considering four options: to bunt, go for a hit, swing for the fence, or let the pitch go.  You believe that the consequences of each combination of strategies are given in the following payoff matrix, where each payoff is the probability (after this next pitch) that your team (A) will eventually win the game:
	Payoff to A (probability of eventually winning)
	B1 (bunt)
	B2 (go for hit)
	B3 (swing for fence)
	B4 (let it go)

	A1 (fastball)
	.4
	.3
	.4
	.8

	A2 (curve)
	.5
	.4
	.7
	.6

	A3 (change-up)
	.1
	.2
	.5
	.7


a) Explain how this problem can be formulated as a zero-sum game, and write out the payoff matrix for that formulation.
b) Are any strategies dominated by any other strategies for either player?  If so, state which strategies are dominated by which other strategies.

c) See if you can find a solution using the method of successive conditional elimination (show your work) for the game.

d) Is there a Nash equilibrium for this game?  If so, what is it?

Overtime
29.  You are the chief negotiator for a labor union that is about to enter with your company’s management into a process of binding arbitration (where an objective third party, agreed to by both sides, makes a decision about what must be done by both sides after each side submits a proposal and presents their case to support it).  The issue at stake is how much of an hourly pay increase (from nothing to an increase of $1.00 per hour) for the company’s workers will be enacted over the course of the new contract for the next year.  Knowing the personality and past decisions of the arbitrator, you believe that the essence of the situation, in simple form, is captured by the following matrix of outcomes:
	Final Pay Increase 
	Mgmt Proposes $0
	Mgmt Proposes $0.50
	Mgmt Proposes $1

	Union Proposes $0
	$0.00
	$0.60
	$0.50

	Union Proposes $0.50
	$0.75
	$0.50
	$0.45

	Union Proposes $1
	$0.50
	$0.25
	$1.00


(a) Formulate this problem as a zero-sum game (show the payoff matrix, and explain what the entries stand for).

(b) Does either side have any strategies dominated by any others?  If so, state which strategy each is dominated by.
(c) Are there any pure strategy Nash equilibria?  Show your work to support your answer.

(d) Formulate the problem as a linear program (with  (  unrestricted in sign) from your (Union) point of view, and solve it using technology.
(e) Formulate the problem as a linear program from the Management’s point of view, and solve it using technology.
30. Consider the zero-sum game with the following payoff matrix:

	Payoff to A
	B1
	B2

	A1
	-4
	3

	A2
	1
	-2


a) Solve the problem from Player A’s perspective graphically.

b) Formulate Player A’s problem as a linear program (with  (  unrestricted in sign) and verify your solution to part (a) by solving it using technology.

31. Consider the zero-sum game with the following payoff matrix:

	Payoff to A
	B1
	B2

	A1
	1
	-3

	A2
	-4
	2


a) Solve the problem from Player B’s perspective graphically.

b) Formulate Player B’s problem as a linear program and verify your solution to part (a) by solving it using technology.

32. In the solution to Sample Problem 7, you saw how the tennis problem could be formulated as a zero-sum game and how strategy  B2  was dominated, as illustrated in the following payoff matrix:
	Probability over 0.5 you (A) win(s) 
	B1: J-M Left
	B2: J-M Middle
	B3: J-M Right

	A1: You Left
	0.2
	0.3
	-0.1

	A2: You Middle
	-0.2
	0.1
	0.2

	A3: You Right
	-0.4
	0
	0.4


a) Solve the problem from Jean-Marc’s (Player B’s) perspective graphically.

b) Formulate Jean-Marc’s problem as a linear program (with  (  unrestricted in sign) and verify your solution to part (a) by solving it using technology.

c) Given your solution to part (a), could you solve your problem graphically?  If possible, do so.










� As mentioned in the introduction to this section, this is named after John Nash, subject of the book and movie A Beautiful Mind, who won a Nobel Prize in Economics for his work in game theory.


� Notice that the plural of “equilibrium” is “equilibria”, similar to extremum/extrema, maximum/maxima, minimum/minima, datum/data, etc.  Latin lives on!


� The relationship between these two problems is exactly what is meant by one linear program being the dual of another (which is then called the primal problem).  See a book on linear programming or operations research for details.
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