La matematica e lo spazio

I modelli geometrici

Scheda 2

Movimenti, direzioni e trasformazioni

1.  Figure "uguali" nel linguaggio comune

2.  I movimenti piani

3.  Direzioni, lunghezze d'arco, il numero π

4.  Rotazioni e coordinate polari

5.  Funzioni circolari

6.  Rette, angoli e poligoni

7.  Simmetrie, isometrie e similitudini

8.  Altre figure e alcuni teoremi

9.  Esercizi

1. Figure "uguali" nel linguaggio comune

    In figura 1 è riprodotto parzialmente il bordo ricamato a mano di una tovaglia. È corretto dire che il disegno di questo ricamo è composto da due sole figure: una figura "a L" e una figura "a croce"?

figura 1        

     E` naturale considerare uguali, ad es., le parti A e G del bordo: sono ricami realizzati nello stesso modo. È sensato dire che anche C è uguale ad A: è un ricamo realizzabile esattamente con gli stessi punti, a patto che ci si metta dall'altro lato del bordo.  Del resto se ritaglio un pezzo di bordo contenente A, lo posso far scorrere fino a che A si sovrapponga a G (®figura 2) o fino a che A si sovrapponga a C (®figura 3):

figura 2                 figura 3      

     Analogamente posso dire che D e B, sono uguali tra loro. Ma queste figure sono uguali alle precedenti? Ad esempio, posso dire che A e B sono uguali?

     Ripiegando il bordo posso sovrapporre A e B in modo che coincidano.

     Quindi sembrerebbe giustificato affermare che sono uguali.

     Tuttavia il procedimento per i due ricami non è identico: occorre invertire l'ordine in cui si danno i punti.         (®figura 4)

figura 5   

         Anche E e F sono in qualche modo uguali: non hanno le stesse dimensioni ma hanno la stessa forma. Se si sa fare il ricamo E si sa fare anche il ricamo F: basta raddoppiare il numero di punti da dare per ogni tratto di ricamo.         (®figura 5)

 

     Nel linguaggio comune l'eguaglianza tra figure può essere intesa in modi diversi, a seconda del con-testo. Ma, in genere, la situazione chiarisce il significato con cui si usa l'aggettivo "uguale".

     Ragionando su figure geometriche astratte, cioè intese come insiemi di punti del piano cartesia-no, occorre precisare il significato di questo aggettivo.

2. I movimenti piani

     A fianco sono disegnate due figure a («alfa») e b («beta»). Viene spontaneo dire che a e b sono uguali. Tuttavia, se le pensiamo come insiemi di punti, a e b non sono uguali; non hanno neanche un punto in comune!

     Vediamo, dunque, di definire che cosa si deve intendere quando si dice che a e b sono uguali come figure.

figura 6

     Si può partire da un'idea simile a quella illustrata nelle figure 2 e 3: se un ritaglio di cartoncino occupa esattamente la figura a, considero uguale ad a ogni altra figura b che riesco a coprire esattamente con il ritaglio facendolo scivolare lungo il piano.

    Nella considerazione appena fatta non potrei sostituire il cartoncino con della pellicola trasparente per alimenti. Perché? Come chiamereste la proprietà che un materiale deve avere per essere impiegato al posto del cartoncino nel ragionamento in questione?

     Il problema della definizione dell'eguaglianza tra figure si riconduce a descrivere matematicamente il tra-scinamento di un oggetto rigido. Un oggetto è rigido se le sue parti sono strettamente legate tra di loro, in modo che spostandolo non cambi aspetto: prese comunque due parti dell'oggetto, la loro distanza rimane invariata. Una pellicola per alimenti si deforma al più piccolo spostamento. Un foglio di carta non è rigido se lo sposto nello spazio tridimensionale (può piegarsi), ma se lo sposto nel piano (per es. mantenendolo attaccato alla superficie di un tavolo) non si deforma, cioè può essere considerato un corpo rigido.

    Tra i due oggetti raffigurati a fianco, ottenuti incernie-rando delle aste metalliche, ve ne sono di rigidi?

a     b

 

    A fianco è raffigurato l'oggetto b dopo che ho cercato di spostarlo spingendolo verso il basso: la distanza tra due perni consecutivi è rimasta immutata in quanto le singole aste non si sono deformate, ma la distanza tra due perni non consecutivi è cambiata.

 

     Soffermandoci per adesso sugli spostamenti nel piano, si può osservare che il concetto di trasla-zione, introdotto nelle schede precedenti, corrisponde a questa idea di movimento dei corpi rigidi: sembra evidente che se applico una traslazione a una coppia di punti la distanza tra questi resta invariata. Per sicurezza, verifichiamo dettagliatamente questo fatto.

     Consideriamo ad esempio la traslazione che trasforma a in b (®figura 6, riprodotta qui sotto). Verifi-chiamo che, presi due punti P e Q di a, questi vengono trasformati in due punti P' e Q' che distano tra loro quanto P e Q.

    (1)   Determina la traslazione Th,k che porta a in b.

                                 h = …                       k = …

         (2)   Verifica che la traslazione non modifica la distanze tra i punti P e Q

         evidenziati, cioè che tra i "trasformati" P’ e Q’ intercorre la stessa

         distanza che c'è tra P e Q.

              xP = …       yP = …                    xP' = …      yP' = …

              xQ = …      yQ = …                   xQ' = …      yQ' = …

        

d(P,Q) = =                            d(P’,Q) = …

    Quanto visto per a e per b può essere generalizzato:

Sia T una generica traslazione e siano P e Q due qualunque punti del piano. Applicando T a P e a Q si ottengono due punti P’ [=T(P)] e Q’ [=T(Q)] tali che d(P’,Q’)=d(P,Q).

Dimostrazione   (da completare):

Siano h e k i passi di T. Allora:

              xP' = xP + h,                                                           yP' = yP + k

              xQ' = xQ + h,                                                           yQ' = yQ + k

              xP' – xQ' = (xP + h) – (xQ + h) = …                      yP' – yQ' = (yP + k) – (yQ + k) = …

              d(P,Q)     = 

              d(P’,Q’)  = 

                                                                                   [simbolo con cui si indica la fine della dimostrazione  ®]                                                         

     La proprietà ora dimostrata può essere espressa così: le traslazioni conservano la distanza.

     Le traslazioni, tuttavia, non esauriscono tutti i modi in cui può essere descrit-to il cambiamento di posizione di un corpo rigido:

   oltre alla situazione di figura 2 (®p.1) ho anche la situazione di figura 3;

   un oggetto rigido che occupi esattamente la figura a (®disegno a fianco) può essere trascinato fino ad occupare la  figura g («gamma»), ma g non può essere vista come l'immagine di a mediante una traslazione.

    Sotto, nella 1ª colonna, sono descritte tre funzioni a 2 input e 2 output; gli output associati a x e a y sono indicati x’ e y’: (x,y)  (x’,y’). Tra esse vi è quella che trasforma i punti di a nei punti di g e, in particola-re, il punto P=(3,5) nel punto P’=(–5,3).   Individuala calcolando, nella 2ª colonna, per ogni funzione la immagine di P e verificando se essa coincide con P.                                                    [per F3 sono già stati svolti i calcoli a mo' d'esempio]

 

 

 

P’ (immagine di P)

OK? (S/N)

 

F1:

x=–x

y=–y

xP=

yP=

 

F2:

x=–y

y=x

xP=

yP=

 

F3:

x=y

y=x+1

xP= yP = 5

yP= xP+1 = 3+1 = 4

N

 

    A fianco è disegnata una figura (evidenziata in scuro) e le sue imma-gini (in bianco) mediante le funzioni F1, F2 e F3 dell'esercizio prece-dente; sono segnati anche due punti e i loro trasformati.

         L'illustrazione suggerisce che tutte e tre le funzioni conservino la di-stanza (ad es. tra i due punti segnati la distanza è sempre 4); ciò può essere verificato procedendo come si è fatto per il caso delle traslazioni.

         Ma solo due possono essere interpretate come movimenti piani:  due figure possono essere pensate come esito di uno scivolamento della figura originale, l'altra, invece, per essere ottenuta necessita anche di un ribaltamento della figura originale,  realizzabile  solo  staccandosi dal pia-

figura 7

 

 

no (in analogia con la situazione della figura 4).

  Associa ad ogni figura bianca la funzione (F1, F2 o F3) che la produce a partire dalla figura scura [aiutati calcolando le coordi-nate dei punti che sono immagine del punto (2,1)] e

  stabilisci quali funzioni possono essere interpretate come movi-menti piani.

 

 

     Le funzioni  F1 e F2 sopra considerate corrispondo-no intuitivamente a una rotazione intorno all'origine di 180° e a una rotazione intorno all'origine di 90°.  A dif-ferenza delle traslazioni, che oltre alle distanze conser-vano l'"orientamento" (il lato in alto della figura a, in-dicato dalla freccia, corrisponde al lato in alto della fi-gura b), queste funzioni non lo conservano (lo stesso lato corrisponde nella figura g al lato disposto verso sinistra, nella figura d («delta») al lato in basso).

Nota. La scrittura d = F1(a) sta per "d è l'immagine di a mediante F1" cioè: d è costituita dai trasformati dei punti di a mediante F1;  in simboli:   F1(a)={F1(P):PÎa}

 

                b = T5,1(a)     g = F2(a)       d = F1(a)

figura 8

 

 

     Sintetizziamo quanto abbiamo visto in questo paragrafo:

 

   vogliamo definire matematicamente l'uguaglianza tra figure (cioè tra parti di spazio) a partire dall'idea che una figura è uguale a un'altra se un oggetto rigido che occupi esattamente la prima figura può essere spostato fino a occupare esattamente la seconda figura;

   restringendoci per ora a uno spazio piano, cerchiamo di tradurre questa operazione fisica con opportune funzioni numeriche che trasformino le coordinate x,y di ogni punto dell'oggetto posizionato sulla prima figura nelle coordinate x’,y’ che esso assume quando è posizionato sulla seconda figura; chiameremo queste funzioni movimenti piani;

   le traslazioni nel piano corrispondono sicuramente a questa idea intuitiva: non modificano la distanza che intercorre tra due punti, in accordo con l'idea che un corpo rigido non si deforma durante gli spostamenti; esse costituiscono il primo esempio di movimenti piani;

   abbiamo visto altre funzioni che conservano la distanza tra punti:

   F3, che, però, non può essere considerata una movimento piano,

   F1 e F2, che invece possono essere interpretate come due particolari rotazioni nel piano.

     Per completare lo studio dei movimenti piani, dobbiamo definire in generale il concetto di rotazione.

3. Direzioni, lunghezze d'arco, il numero π

     Che cos'è una direzione?

     Sembra naturale, facendo riferimento al significato intuitivo di "direzione", dire che (®figura 9) il vet-tore = (5,3), che trasla A in B (∆x=5, ∆y=3), ha la stessa direzione di = (10,6) e direzione diversa da quelle di = (0,4) e di = (–5,–3).

     Il vettore è opposto ad , per cui sembra naturale dire che ha direzione opposta rispetto a questo vettore, e anche rispetto a .

    (1)    Sapreste scrivere qualche altro vettore diretto come (5,3)?

         (2)    E qualche altro vettore diretto come (–5,–3)?                              (3)   E come (0,4)?

    Cercate un modo per descrivere l'insieme di tutti i vettori diretti come (5,3).

figura 10

    Nella scheda 1 di La matematica e lo spazio abbia-mo introdotto la somma di due vettori (se v1=(h1,k1) e v2=(h2,k2),  v1+v2=(h1+h2,k1+k2)) e l'opposto di un vettore (se v=(h,k), v=(–h,–k)).

    Ora definisco prodotto del vettore v=(h,k) per il numero q,  e indico con qv,  o con q(h,k),  il

vettore (h·q, k·q), cioè il vettore ottenuto moltiplicando per q le componenti del vettore originale.

     In figura 10 è raffigurato un vettore v e il vettore 3v, che ha ∆x e ∆y tripli rispetto a v.

Nota. Il vettore 3v trasla un punto a distanza tripla di quanto lo trasla il vettore v, cioè il modulo (®Gli oggetti matematici) di 3v è il triplo del modulo di v. La cosa sembra ovvia, poiché le componenti di 3v sono il triplo di quelle di v.   Dimostriamolo:

se v=(h,k), il modulo di v è e 3v è (3h,3k);   il modulo di 3v è  = =

= = 3, che è proprio il triplo del modulo di v.

     Più in generale, il modulo di qv è pari al modulo di v moltiplicato per q.

     Precisando le considerazioni iniziali, definisco i vettori v e w ugualmente diretti se esiste un numero q>0 tale che v=qw, e di direzione opposta se esiste un numero q<0 tale che v=qw

     Nel caso di fig. 9, i vettori = (5,3) e = (10,6) sono ugualmente diretti in quanto (10,6)=2(5,3), ovvero in quanto (5,3)= .  Nel caso di fig. 10, parte destra, v e 3v sono ugualmente diretti.  Nel caso di fig. 10, parte centrale, v e –v sono di direzione opposta in quanto v=(–1)v e 1<0.

     Ora voglio caratterizzare con un numero la direzione di un vettore. Provo a usare la pendenza. Nel caso del vettore  di fig. 9 i passi sono ∆x=5, ∆y=3; quindi la pendenza è:  y/x=3/5=6/10=0.6=60%.

   (1)   Quale pendenza corrisponde alla traslazione opposta, che manda A in C?

         (2)   Quale pendenza corrisponde alla traslazione che manda A in D?

         Dunque, il concetto di pendenza non è una traduzione matematica adeguata dell'idea di direzione: non permette di distinguere le direzioni opposte (quesito 9, parte 1) e di caratterizzare la "direzione dell'asse y" (quesito 9, parte 2).    Un'idea può essere quella di procedere in modo analogo a come si indicano le direzioni sulle cartine geografiche (®scheda 1 di Per strada, p. 2-3).  Per individuare la direzione di un vettore posso:

    raffigurare il vettore applicato all'origine, cioè come freccia                           che parte dall'origine,

    porre un goniometro con il centro nell'origine (®figura 11)

    misurare l'angolo che ha come primo lato (seguendo il verso                  antiorario) la parte "positiva" dell'asse x e come secondo lato             la freccia che rappresenta il vettore.

     Per il vettore di figura 9 che trasla A in B trovo la "direzione" di circa 30°, per quello che trasla A in C la direzione di circa 210°, per quello che trasla A in D la direzione di 90°.

     Ma questo procedimento si basa sull'impiego di uno strumento di misura "fisico", il goniometro, e può fornire solo una valuta-zione approssimata della direzione.

figura 11

     Per definire e valutare le direzioni con strumenti matematici posso procedere analogamente a quando  abbiamo caratterizzato la posizione di un punto P lungo una retta rispetto a un punto di riferimento O:

   là si è usato il concetto di retta numerica (®Gli oggetti matematici) come versione astratta del nastro misuratore e quello di coordinata come traduzione matematica della misura della distanza di O da P;

posizione di un punto su una retta

   qui posso ricorrere a una versione astratta del goniometro e introdurre una nuova coordinata che traduca matematicamente la misura dell'angolo che il vettore forma con l'asse x.

     Come supporto per il "goniometro" prendo il cerchio di centro (0,0) e raggio 1, cioè x2+y2=1.

     Per tracciare le tacche devo in qualche modo misurare l'arco di cerchio che man mano percorro a partire dal punto di riferimento A=(1,0). Ma non posso usare né un nastro misuratore né una ro-tellina graduata (®figura a lato): devo basarmi solo (1) sulla de-finizione della distanza euclidea e (2) sull'equazione del cerchio:

(1)  Utilizzando il concetto di distanza posso definire la lunghezza di un percorso a tratti rettilinei P1P2P3… come la funzione che al-la sequenza di punti P1,P2,P3,… associa il numero d(P1,P2)+

direzione di un vettore

(posizione sul cerchio di

centro (0,0) e raggio 1)

 

d(P2,P3)+d(P3,P4)+…  (®figura sottostante a sinistra).

           

     Posso poi valutare la lunghezza di percorsi non rettilinei: la strada da A a C lungo il percorso raffigurato sopra a destra è approssimabile con la lunghezza del percorso a tratti rettilinei ABC; una migliore approssimazione la posso ottenere considerando il percorso a tratti rettilinei ADBEC; …

(2)   Per effettuare queste valutazioni devo disporre di un procedimento per determinare le coordinate dei punti che formano il percorso.

     Nel caso dei percorsi AP lungo il nostro cerchio (A=(1,0) viene detto origine degli archi ), posso ricorrere all'equazione del cerchio: per i punti del cerchio che stanno al di sopra dell'asse orizzontale, data x posso trovare y mediante la funzione x ; per quelli che stan-no sotto all'asse orizzontale posso ricorrere alla funzione x .

     Più precisamente come lunghezza dell' arco di cerchio AP (arco che va da A a P) prendo il valore L man mano meglio appros-simabile con – vedi figura a lato – la lun-ghezza dei seguenti percorsi a tratti rettilinei:

   AP,

   AQP (Q con ascissa a metà tra le ascisse di A e di P),

   ARQSP (R e S con ascisse a metà, rispettivamente, tra le ascisse di A e Q e tra quelle di Q e P),

  

 

[ciascun percorso è costituito da tratti con uguale ∆x,  e  in ogni nuovo percorsox si dimezza,  ovvero la

quantità dei tratti raddoppia]

Nota. Il procedimento ora descritto va bene se yP0. Se invece P sta sotto l'asse x, approssimo con percorsi analoghi l'arco AB e l'arco BP (B è (–1,0): vedi figura a lato) e prendo la loro congiunzione come approssimazione dell'arco AP.  A fian-co sono disegnati i percorsi a 2 tratti rettilinei che approssimano gli archi AB e BP.

     Il programma L-ARCO calcola le approssimazioni della lunghezza dell'arco AP, ottenibili con percorsi a 1, 4, 16, 64, … tratti rettilinei.  Usiamolo per calcolare la lunghezza del semicerchio che sta sopra all'as-se x (cioè dell'arco AP con P=(–1,0)), valore che viene indicato con π ("pi greca"):

                 

     Il programma, oltre alle approssimazioni L della lunghezza dell'arco AP (l'utente deve battere xP, il programma, da solo, calcola yP), stampa man mano anche la variazione rispetto alla precedente appros-simazione. Si può osservare che L man mano ha incrementi sempre più piccoli, e che ogni incremento è pari a poco più di 1/10 del precedente.

     Quindi, arrivato ad esempio a 1024 tratti, dopo aver osservato che il valore ottenuto (3.1415…) ha ri-spetto al precedente (3.1413…) un incremento di circa 2 unità nella cifra di posto –4 (e, infatti, l'incremen-to è 1.77…·10–4 @ 10–4), anche senza procedere ulteriormente, posso dedurre che gli incrementi suc-cessivi potranno ammontare a circa 2 unità della cifra successiva:  da 3.1415672… potrò arrivare a circa 3.1415872…. Posso, dunque, arrotondare la lunghezza cercata, cioè π, alla cifra di posto4 con 3.1416.

Se avessi arrestato il programma a 4096 tratti, qual è il miglior arrotondamento di π che avrei potuto ottenere?

     Il procedimento descritto consente di conoscere la lunghezza di ogni arco AP con la precisione voluta: basta considerare un numero sufficiente di tratti.

     Naturalmente, eseguendo il procedimento mediante il programma l-arco, non potrò conoscere più cifre di quelle che visualizza il programma, e le ultime cifre potranno essere affette da qualche errore di approssimazione.

     Ma, modificando opportunamente il programma e disponendo di una calcolatore dotato di sufficiente memoria, o eseguendo i calcoli a mano e disponendo di carta e tempo a volontà, potrei operare con più cifre e, in via teorica, trovare valori precisi quanto voglio. Abbiamo già fatto considerazioni analoghe a proposito del procedimento per il calcolo delle radici quadrate (®La automazione, scheda 2, p.12, dopo il quesito 30).

[per approfondimenti sul procedimento e su l-arco si possono vedere i quesiti 35-36 del paragrafo Esercizi]

Nota storica. Utilizzando il calcolatore e descrivendo le figure mediante equazioni abbiamo visto che è abbastanza facile trovare in poco tempo valori di π arrotondati a molte cifre.

Ad esempio con l-arco in pochi minuti posso arrivare alle uscite a fianco, che mi consentono di concludere che, arrotondando, π=3.14159265.

Con altri due passi del programma (in meno di un'ora o in qualche ora, a seconda del modello di computer) posso arrivare all'arrotondamento a 11 cifre significative 3.1415926536.

Ben altra fatica e altro tempo aveva impiegato il siracusano Archimede, intorno al 250 a.C., per dimostrare, approssimando il semicerchio con opportuni percorsi a tratti rettilinei, che 3+10/71<π<3+1/7, cioè che 3.14084…<π<3.14285. Si deve arrivare al francese Vieta, nella seconda metà del XVI secolo, per ottenere l'arrotondamento di π a 10 cifre significative.

Sino a qualche secolo fa si sperava di esprimere π sotto forma di frazione; solo intorno al 1750 si è dimo-strato che π è irrazionale.

Utilizzando l-arco (battendo 0 co-me xP e specificando che P è al di so-pra dell'asse x, cioè che yP>0) trovo che l'arco che va dalla parte positiva dell'asse x alla parte positiva dell'asse y è lungo, arrotondando, 1.570796.

    

     Calcola il rapporto (approssimato) tra π e questo valore.

    Si può effettivamente dimostrare (vedi quesito 37 del paragrafo Esercizi) che l'arco del quesito 11 è lungo π/2, così come si può dimostrare che, estendendo il procedimento al percorso che a partire da A ritorna in A, si ottiene 2π come lunghezza dell'intero cerchio.

    A questo punto ho tutto ciò che occorre per definire la direzione di un vettore. Dato un vettore , prendo il vettore diretto come ma con modulo 1, cioè con P sul cerchio di centro O e raggio 1. Definisco direzione di  la lunghezza dell'arco AP.

 

 

     Determiniamo la direzione di =(4,2):

   il modulo di è d(Q,R)== ;

   ha modulo 1 (®nota a p.4): è il vettore ;

   quindi P=(4/; 2/);

   dando come input a l-arco xP=4/=0.89442719 otteniamo:

                          figura 12

          Dunque, arrotondando, la direzione è 0.4636476.

Determina la direzione dei tre vettori raffigurati a fianco.

 

    Indicando le direzioni nel modo usuale (®fig.11) di-remmo che i tre vettori del quesito precedente hanno co-me direzioni 0° (v), 90° (u) e 180° (w).  Il grado (1°) è, infatti, la lunghezza di un arco pari alla 360-ma parte del cerchio di centro O e raggio 1. Cioè, per definizione:

= =

 

     Questo "cambio di unità", cioè l'uso di "°", rende più comoda la rappresentazione delle direzioni di uso più frequente. È una situazione analoga all'impiego di "%" per rappresentare i rapporti e ad altre situazioni in cui si usano delle rappresentazioni proporzionali (®Gli oggetti matematici):

direzione in gradi = direzione ·

Mediante una CT (usando il tasto  ) trova l'espressione in gradi della direzione del vettore di fig.12.          0.4636476 = ............... °

4. Rotazioni e coordinate polari

     Abbiamo visto che:

   per esprimere numericamente la direzione di un vettore ci si riconduce al vettore di modu-lo 1 ugualmente diretto e si considera la lunghez-za dell'arco AP;

   per rendere più comoda la rappresentazione si può indicare con il simbolo ° il rapporto π/180: in questo modo π, π/3, … diventano 180°, 60°, .

     Intuitivamente, il punto P di figura 14 può essere pensato come l'effetto della rotazione del

punto A di circa 123° attorno all'origine. A partire da questa osservazione si può introdurre in generale il concetto di rotazione:

 

dati un punto K e un numero f (f è la lettera greca "fi"), chiamo rotazione attorno a K di ampiezza f, e indico con RK,f, la funzione che a ogni punto P associa il punto P’ tale che rispetto a abbia lo stesso mo-dulo e direzione aumentata di f.

    Nella figura a lato a è la direzione di e f=π/2=90°.

    Anche nel disegno a mano le rotazioni possono essere realizzate in questo modo:  si posiziona il "centro" del goniometro su K  e,  per ogni punto P da

    ruotare,  si legge la direzione a di ,  si aumenta a di f, mediante il gonio-metro si determina come tracciare la semi-retta KP’, mediante una riga graduata si misura la distanza di P da K e sulla semi-retta tracciata prima si prende P’ alla stessa distanza da K.

        In figura 15 è illustrata la realizzazione di una rotazione ampia 80° di due punti P e Q.

Su fig. 15 traccia il punto S immagine di P mediante RK,25°.

 

     In matematica il grado è un numero, cioè il risultato di π/180. Nelle applicazioni, in genere, viene considerato una unità di misura, corrispondente a una opportuna divisione del goniometro.

     Analogamente, nelle applicazioni, quando le direzioni sono espresse senza ricorrere ai gradi, alla ampiezza delle rotazioni si aggiunge il simbolo rad a indicare l'unità di misura radiante. Ad es. l'am-piezza f=90° viene scritta come f=π/2 rad.

 

     Cioè viene considerata la seguente equivalenza:  = π/180 rad.

     In matematica, invece, non è necessario aggiungere "rad". Spesso, tutta-via, per comodità, anche noi parleremo di "rappresentazione in radianti".

     La parola radiante deriva dal fatto che 1 radiante è l'ampiezza della rotazio-ne che fa avanzare un punto su un cerchio di un percorso lungo quanto il raggio (se in fig.14 la distanza tra O e A, cioè la misura "fisica" del raggio del cerchio, è r mm, la lunghezza "fisica" del percorso AP è 2.139r mm). E in latino "raggio" si dice radius.

Sulla figura a lato, traccia il punto P’ immagine di P mediante RS,250°.

        Qual è la direzione del vettore SP?

 

     Da questo quesito emerge che dobbiamo precisare l'espressione «aumentata di f» utilizzata nella defini-zione di rotazione RK,f data nella pagina precedente, ad esempio nel modo seguente:

     se a è la direzione di , la direzione di è a(+)f, dove l'operazione (+) è definita così:

 

x (+) y  è:

x+y se x+yÎ[0°,360°); altrimenti è:

x+y aumentato o diminuito ripetutamente di 360° fino a ottenere un numero che sta in [0°,360°)

 

 

Nota. A volte come insieme delle direzioni si considera non [0°,360°) ma (–180°,180°] o [–180°,180°), o (–360°,360°), intendendo, in quest'ultimo caso, che quando si scrive –90° si intende la stessa direzione di quando si scrive 270° e, più in generale, che x e y sono uguali come direzioni se sono lo stesso numero o se differiscono di 360°.

     Le  rotazioni di ampiezza positiva [negativa] vengono dette "in verso antiorario [orario]. L'ampiezza di 360° viene chiamata giro.

Un radar è costituito da una antenna, capace di inviare e ricevere "raggi" (o, meglio, onde elettromagnetiche), che ruota su se stes-sa. Se un raggio inviato incontra un ostacolo, questo lo riflette; l'antenna rileva il raggio riflesso e, in base al tempo trascorso, de-

    termina la distanza dell'ostacolo.

        

        Nella figura a lato è riprodotto lo schermo su cui un particolare radar visualizza gli oggetti rilevati: il segmento graduato che ruota indica la direzione in cui è man mano diretta l'antenna, la distanza tra le tacche corrisponde a 10 km. In due riquadri appaiono man mano le indicazioni numeriche delle posizioni degli oggetti rilevati.

 

     Completa i riquadri scrivendo (in km e in gradi) i dati relativi all'oggetto che il radar sta rilevando.

 

     Un punto P=(x,y) può essere individuato anche usando un altro tipo di coordinate: le coordinate polari, cioè il modulo di  , in gene-re indicato con r (la lettera greca "ro"), e la direzione di  , in genere indicata con q (la lettera greca "teta").

     Le coordinate polari permettono di descrivere facilmente le rotazioni attorno all'origine: la rotazione di ampiezza f trasforma P di coordinate polari r=d e q=a nel punto P’ di coordinate polari r=d e q=a(+)f.

Nota. Il termine "polari" è dovuto a un'analogia con i poli terrestri: i pa-ralleli indicano la distanza dai poli così come r indica la distanza dall'ori-gine O, i meridiani permettono di individuare posizioni diverse sul mede-simo parallelo così come due punti con uguale r si distinguono per il valore di q.

 

5. Le funzioni circolari

     Una volta introdotto il concetto di direzione, abbiamo visto che è facile precisare il concetto di rotazione. Abbiamo anche visto che le traslazioni possono essere descritte indicando, invece dei passi ∆x e ∆y, il modulo e la direzione del vettore corrispondente.

     In questo paragrafo completeremo il discorso verificando che le trasformazioni F1 e F2 introdotte come esempi in §2 sono effettivamente delle rotazioni e studieremo come dalla descrizione di un vettore in modulo e direzione si può passare a quella in componenti.

     In figura 16 sono illustrate le trasformazioni F1 e F2 considerate a p.3.

     F1 è, intuitivamente, una rotazione di 180° attorno a (0,0). Per verificarlo dovremmo dimostrare che il vettori (a,b) e (–a,–b) hanno direzioni che differiscono di 180°.

     Analogamente, per verificare che F2 è una rotazione di 90°,  dovremmo dimostrare che la

direzione del vettore (–b,a) è ottenibile addizionando 90° alla direzione di (a,b).

 

 

 

   Soffermiamoci su F1.

   Questa funzione trasforma il punto P nel punto P’ tale che è il vettore opposto a .

   Si può dimostrare (vedi quesito 34 del paragrafo esercizi) che, se P è un punto del cerchio di centro O e raggio 1 con yP>0, l'arco AP’ ha la lunghezza dell'arco AP aumentata di π, cioè di 180°.

   Da ciò possiamo concludere che effettivamente F1 è uguale a RO,180°.

   In modo simile si può ottenere che effettivamente F2 è uguale a RO,90°.

     I vettori di modulo 1 possono essere usati per individuare tutte le direzioni verso cui può essere diretto un vettore. Per questo motivo vengono detti versori.

     Nella figura 17, a sinistra, è rappresentato il vettore (2,1), che è diretto come il vettore = (4,2) con-siderato a p.7. Poiché il modulo di (2,1) è = , il versore è (2/, 1/), che è, ovviamente, lo stesso trovato a p.7 (dove era scritto in modo diverso, ma equivalente: 4/= 4/= 4/(·) = 4/(2·) = 2/).

        

     Le componenti del versore di direzione a sono dette coseno e seno di a e indicate cos(a) e sin(a). In altre parole sin e cos sono funzioni che, data in input la lunghezza dell'arco di cerchio AP, restituiscono le coordinate di P;  per questo motivo sono dette funzioni circolari ("circolo" è sinonimo di "cerchio").

     Avrai notato che sulle CT sono presenti i tasti  e . Essi calcolano, appunto, gli output di queste. Le direzioni possono essere date sia direttamente, cioè "in radianti", sia in gradi.

     In genere le CT, al loro avvio, sono predisposte per operare in gradi. Per passare da una rappresenta-zione all'altra esistono appositi tasti. Alcune CT hanno un tasto  che fa passare dalla rappresentazione in gradi a quella in radianti; la "d" sta per "degree", traduzione inglese di "grado"; la "r" sta per "radianti". Quando la CT è in modalità-radianti, sul visore appare, in piccolo, la scritta "rad". Per tornare alla moda-lità-gradi si preme  o  a seconda del modello.

     Altre CT hanno un tasto la cui pressione fa passare, a rotazione, dalla rappresen-tazione in gradi a quella in radianti, a quella in "gradienti". La "g" sta a indicare quest'ul-tima "unità", che corrisponde a π/200 e è usata in alcune applicazioni; viene anche detta grado centesimale in quanto corrisponde alla suddivisione dell'arco raffigurato a fianco in 100 divisioni.    A seconda della modalità di funzionamento sul visore compaiono le scritte

deg, rad e grad (nota bene: questa è la modalità-gradienti, la modalità-gradi è indicata deg).

    Ecco come, con una CT in modalità-gradi, posso ricavare le componenti del versore di direzione 26.565°

 

(®fig. 17):

con    26.565     ottengo  xP=0.447…;     con    26.565     ottengo  yP=0.894.

 

Aiutandoti con la CT, trova le componenti dei vettori di modu-lo 3 e direzioni 30°, 45° e 60°. Quindi sul sistema di riferimento a fianco, senza servirti del goniometro, rappresenta questi tre vettori applicati all'origine (0,0).  

    [traccia: il vettore di modulo 3 e direzione a ha come componenti quelle del versore di direzione a moltiplicate per 3]

     Risolvendo il quesito precedente abbiamo trovato che (®figura 18):

sin(30)° = cos(60°) = 0.5          sin(60)° = cos(30°)          sin(45°) = cos(45°)

figura 18        

     Queste informazioni sono facili da ricordare, anche visivamente, e consentono di ricavare facilmente, utilizzando l'equazione del cerchio, gli altri valori che nel quesito precedente hai calcolato con  e  .

     Se indichiamo con C il coseno di 30°, cioè il "?" nella figura a sinistra, abbiamo:

(1)    C2+0.52=1           applico "0.52" ai due membri:

(2)      C2=1–0.52         svolgo i calcoli (1–0.52=1–0.25=0.75):

(3)      C2=0.75                applico "":

(4)      C=          che posso scrivere anche  o  / =/2

Nota.  (3) e (4) non sono equivalenti, poiché "" restituisce solo il numero positivo il cui quadrato è 0.75.  Dovrei avere anche la soluzione C=–.    Comunque, nel nostro caso (®fig.18), C deve essere positivo.

     Quindi  cos(30°) = sin(60°) = =/2.

  Procedi analogamente per determinare                    ...................................

il valore esatto di sin(45°).                                           ...................................

                                                                                                                              ...................................

                                                                                                                              ...................................

                                                                                                                              ...................................

                                                                                                                              ...................................

 

     Noti il seno e il coseno di a posso trovare la pendenza corrispondente alla direzione a. Infatti sin(a) e cos(a) non sono altro che i passi ∆y e ∆x della traslazione di modulo 1 e direzione a. Esiste, però un modo molto più semplice: le CT sono dotate del tasto   che calcola, data una direzione, la pendenza ad essa corrispondente. La funzione che viene calcolata da questo tasto si chiama funzione tangente e viene indicata tan. Anche questa è una funzione circolare.

     Con i tasti delle funzioni circolari posso risolvere rapidamente vari problemi che nella scheda 2 di Per strada erano stati risolti usando riga, squadra e goniometro. Vediamo due esempi. Nel paragrafo Esercizi puoi trovarne altri.

Qual è la pendenza di una strada inclinata di 20°?          Con   20   ottengo:  0.3639…, cioè 36%.

Quanto è inclinata una strada con pendenza del 14%?   Con   0.14   ottengo:  7.96…, cioè 8.0°.

     La sequenza di tasti  (o ) calcola la funzione inversa di tan, o, meglio, dato in input un numero, restituisce una delle due direzioni che ha tale valore come pendenza.  Se batto  1 ot-tengo come output 45°, cioè la direzione a nella parte destra di figura 19; ma anche (=a+180°) ha pendenza 1.  Analogamente, se batto  0 ottengo come output 0°, cioè la direzione b nella parte destra di figura 19; ma anche (=180°) ha pendenza 0.

     Considerazioni simili valgono per  e  . Non ci soffermiamo ulteriormente su questi aspetti, che studierai più a fondo nelle classi successive. Comunque, nel caso tu debba interpretare le uscite della CT di fronte a calcoli del genere, puoi far riferimento alla figura 19:

a e individuano sul cerchio         a e individuano sul cerchio         a e hanno la stessa 

la stessa y:    sin(a) = sin()            la stessa x:    cos(a) = cos()          pendenza p:  tan(a) = tan()

ma   y   dà solo a             ma   x   dà solo a            ma   p   dà solo a

b e individuano sul cerchio          b e individuano sul cerchio          b e hanno la stessa

la stessa y:    sin(b) = sin()            la stessa x:    cos(b) = cos()           pendenza p:  tan(b) = tan()

ma   y   dà solo b              ma   x   dà solo b            ma   p   dà solo b

Nota. Le CT, visualizzando i risultati di calcoli eseguiti con  e , esprimono le direzioni comprese tra 180° e 360° con numeri negativi, cioè considerano le formulazioni equivalenti ottenute togliendo 360°, cioè un giro.

6. Rette, angoli e poligoni

     Abbiamo usato molte volte le parole retta, rettilineo, …, sin dalle prime unità didattiche.

     Li abbiamo impiegati, intuitivamente, come nel linguaggio comune, per descrivere l'andamento di particolari funzioni, ad es. x  2x–1, per descrivere percorsi e tratti di strada, per caratterizzare le linee tracciabili appoggiandosi a una riga, … .

     E abbiamo incominciato a darne alcune caratterizzazioni matematiche. Abbia-mo introdotto la retta numerica, cioè l'insieme dei numeri reali IR, come ma-tematizzazione delle posizioni lungo una traiettoria rettilinea.   Poi, dopo aver introdotto  il piano cartesiano (®Gli oggetti matematici) per caratterizzare mate-

maticamente  una superficie piana, abbiamo chiamato "retta" anche l'insieme dei punti che costituiscono l'

asse x, cioè dei punti del tipo (,0), e l'insieme dei punti che costi-tuiscono l'asse y, cioè  dei punti del tipo (0,),  e anche insiemi come quello costituito dai punti (3, ), descrivibile con l'equazione x=3,  o come quello costituito dai punti (2.5,),  descrivibile con l'equazione y=2.5.

     Ora possiamo darne una caratterizzazione più generale.

    Iniziamo chiamando semiretta di origine P e direzione a l'insieme dei punti che possono essere ottenuti da P con traslazioni di direzione a.

Rappresenta, nella parte di piano cartesiano sopra raffigurata, la semiretta di origine (1,1) e direzione 45° e la semiretta di origine (2,4) e direzione 225°.

continua