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Chapter 1

Basics

1.1 Goniometric functions

For the goniometric ratios for a poipton the unit circle holds:

cos(¢) =z, , sin(¢) =y, . tan(p) = 22

sin?(z) + cos?(x) = 1 andcos—2(z) = 1 + tan?(z).
cos(a £ b) = cos(a) cos(b) Fsin(a) sin(b) , sin(a + b) = sin(a) cos(b) % cos(a) sin(b)
tan(a) & tan(b)

tan(a £ ) = 1 F tan(a) tan(d)
Thesum formulasare:
sin(p) +sin(q) = 2sin(z(p +q)) cos(3(p — q))
sin(p) —sin(q) = 2cos(z(p+q))sin(3(p — q))
cos(p) +cos(q) = 2 cos(%(p +q)) cos(%(p —q))
cos(p) —cos(q) = —2sin(3(p+q))sin(3(p —q))

From these equations can be derived that

2cos?(x) =14cos(2z) ,  2sin’(x) =1 — cos(2x)
sin(m — ) =sin(z) ,  cos(m —xz) = — cos(x)
sin(im —z) =cos(z) , cos(3m— ) = sin(z)

Conclusions from equalities

sin(z) =sin(a) = z=ax2kmorz=(m—a)x2kn, keIN
cos(x) =cos(a) = wx=ax2kmorx=—a+2knm

tan(z) = tan(a) = x=axkrandx # g +km

The following relations exist between the inverse goniometric functions:

> , sin(arccos(z)) = /1 — a2

_ x
arctan(x) = arcsin <4> = arccos (
+1

2 2 +1

1.2 Hyperbolic functions
The hyperbolic functions are defined by:

e’ —e™" e¥ e " sinh(z)
h(z) = tanh(z) =
5 , cosh(z) 5 , tanh(z) cosh(z)

sinh(z) =

From this follows thatosh?(z) — sinh?(z) = 1. Further holds:

arsinh(z) = Injz + V22 + 1| , arcosh(z) = arsinh(v/ 22 — 1)
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1.3 Calculus

The derivative of a function is defined as:

d .. flx+h)—f(r)
e h

Derivatives obey the following algebraic rules:

_ ydx — zdy

dlxty)=detdy , dlzy) =zdy+ydx , d (g) 7

For the derivative of the inverse functigit" (y), defined byf ™ (f(z)) = z, holds at point? = (z, f(z)):
P (F@)
dy jo dr ) p

g df dg

dr @ dr
Further, for the derivatives of products of functions holds:

Chainrule: iff = f(g(x)), then holds

n

(o™ =3" (Z) Pk g0

k=0

For theprimitive functionF'(z) holds: F’(z) = f(z). An overview of derivatives and primitives is:

y=f(z) | dy/dz= f'(z) [ f(z)dz
az™ anz™ 1 a(n+ 1)~ tant!
1/x —g2 In ||
a 0 ax
az a” h;(a) a®”/ 1£(a)
“log(x) (r1n(a))~! (xIn(z) — z)/In(a)
In(z) 1/x zln(z) —z
sin(z) cos(x) —cos(x)
cos(x) — sin(z) sin(x)
tan(z) cos™%(x) —In| cos(x)|
sin™ () —sin~?(z) cos(x) In | tan($z)|
sinh(z) cosh(zx) cosh(z)
cosh(x sinh(z) sinh(z)
arcsin(x) 1//1 — 22 zarcsin(z) + V1 — z2
arccos(r) —1/v/1 — a2 xarccos(z) — V1 — a2
arctan(x) (1+22)~1 zarctan(z) — 3 In(1 4 22)
(a+22)712 | —x(a+ 2?)3/? . In|z 4+ va + 22|
(% — 2?)~t 2z(a? + 22%)7?2 %ln|(a+x)/(a—a:)|

Thecurvaturep of a curve is given byp =

(1+ (y)?)3/?
ly"|

The theorem of De 'l lépital: if f(a) = 0 andg(a) = 0, then islim “—— = lim

f(x)

2l g()
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1.4 Limits
i T —1 t z ,
i S g gy @) lm(1+ k)Y =e, lim (1+ﬁ) —en
r—0 x z—0 x z—0 x k—0 T—00 T
In? 1 P
limz®In(z) =0, lim n'(z) =0, hmmza ,  lim Z—0 als|a| > 1.
x|0 r—oo 9 z—0 €T z—o0 qF
lim (al/m — 1) “n(a) , lim 2@ ez
x—0 x—0 x xr—00

1.5 Complex numbers and quaternions

1.5.1 Complex numbers

The complex number = a + bi with a andb € IR. a is thereal part, b theimaginary partof z. |z| = va? + b2.
By definition holds:i? = —1. Every complex number can be writtenas- |z| exp(iy), with tan(¢) = a/b. The
complex conjugatef z is defined ag = z* := a — bi. Further holds:

(a+bi)(c+di) = (ac—bd)+i(ad+ bec)
(a+bi))+ (c+di) = a+c+i(b+d)
a+bi  (ac+bd) +i(bc — ad)
c+di 2+ d?

Goniometric functions can be written as complex exponents:

1, ..
sin(z) = Z(e” —e ')

1, ..
cos(z) = 5(6” +e™')

From this follows thatos(iz) = cosh(z) andsin(iz) = i sinh(z). Further follows from this that
et = cos(x) £ isin(x), S0e’* # 0Vz. Also the theorem of De Moivre follows from this:

(cos(p) + isin(p))™ = cos(np) + isin(nep).

Products and quotients of complex humbers can be written as:

2z = |al-lzl(cos(er +¢2) +isin(er +¢2))
z z ; si
2 u(cos(c,ol —p2) +isin(er — p2))
2z |22]

The following can be derived:
|21 + 22| < 21| + 22| 5 [21 = 22| = []21] = |22] |

And from z = rexp(if) follows: In(z) = In(r) + 6, In(z) = In(z) £ 2nmri.

1.5.2 Quaternions

Quaternions are defined as= a + bi + cj + dk, with a, b, c,d € IR andi? = j2 = k? = —1. The products of
i, j, k with each other are given by = —ji = k, jk = —kj = i andki = —ik = j.
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1.6 Geometry

1.6.1 Triangles

The sine rule is:
a b c

sin(o)  sin(f)  sin(y)

Here,a is the angle opposite g /3 is opposite td andy opposite ta=. The cosine rule isa? = b?+c%—2bc cos().
For each triangle holdsi + 3 + v = 180°.

Further holds:
(@+pB) a+bd

(= 1)) a—1b

tan(

ISIE T

tan(

The surface of a triangle is given Byibsin(y) = $ah, = v/s(s — a)(s — b)(s — ¢) with h, the perpendicular on
aands = 1(a+b+c).

1.6.2 Curves

Cycloid: if a circle with radiusa rolls along a straight line, the trajectory of a point on this circle has the following
parameter equation:

x =a(t+sin(t)) , y=a(l+ cos(t))

Epicycloid: if a small circle with radius rolls along a big circle with radiu®g, the trajectory of a point on the small
circle has the following parameter equation:

x = asin (mt> + (R+a)sin(t) , y=acos <mt) + (R+ a)cos(t)
a a

Hypocycloid: if a small circle with radius: rolls inside a big circle with radiu®, the trajectory of a point on the
small circle has the following parameter equation:

x = asin (?t) + (R—a)sin(t) , y=—acos (?t) + (R — a)cos(t)
A hypocycloid witha = R is called acardioid. It has the following parameterequation in polar coordinates:

r = 2a[l — cos(p)].

1.7 \Vectors

Theinner products defined byz - b= " a;b; = |@| - [b| cos(¢)

wherey is the angle betweefiandb. Theexternal products in Ik3 defined by:
. ayb, —a.by, €y €y €
axb= azby — azb, =|a; ay a;
azby — ayby

Further holds{a x b| = |@| - |b|sin(y), and@ x (b x &) = (@- )b — (@- b)e.
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1.8 Series

1.8.1 Expansion

The Binomium of Newton is:

where " ~—L
k) El(n — k)"

By subtracting the seriey_ »* andr 3 r* one finds:

k=0 k=0
1 — pntl
>
1—r
k=0
o N 1
and for|r| < 1 this gives thegeometric seriesy _ r = .
1—r
k=0
N
Thearithmetic seriess given by:» "(a +nV) = a(N + 1) + $N(N + 1)V,
n=0

The expansion of a function around the pains given by theTaylor series

(w*a)

(z —a)?

f(x) = f(a) + (z —a)f'(a) + 5 ')+ + ————f"(a) +
where the remainder is given by:
h"™
Ry (h) = (1= 60)"— f"*(6h)
and is subject to:
mhn+1 Mhn—H
< R,(h) <
(n+1) (n+1)!
From this one can deduce that -
(8%
1 _ a n
(== (%)
One can derive that:
1 w2 =1 7 > 1 76
2 ET T XwT w0 2w
n=1 n=1 n=1
n s ( 1)n+1 7.(.2 s ( 1)n+1
ZkQ: n(n+1)(2n+1), Z 2 T 12 Z =1In(2)
k=1 n=1 n=1
an? -1 27 L (2n-1)2 0 8 4~ (2n- 1) —( nfl T 32

1.8.2 Convergence and divergence of series

If > |u,| convergesy . u, also converges.
n n

If lim w, # 0than)_ u, is divergent.
n—oo n

An alternating series of which the absolute values of the terms drop monotonously to 0 is convergent (Leibniz).




6 Mathematics Formulary by ir. J.C.A. Wevers

If [° f(a)dz < oo, than f, is convergent.

n

If u, > 0Vnthenis)_ u, convergenif > In(u, + 1) is convergent.

n n

Cn+1

n—oo

. L 1
If u, = c,z™ the radius of convergengeof > u,, is given by:— = lim 3{/|¢,| = lim
n p n—oo

mn

(oo}
. 1. . . .
The senesE —Is convergentifp > 1 and divergentip < 1.
n

n=1

n

If: lim 22 — p, than the following is true: ip > 0 than}_ u,, and>_ v,, are both divergent or both convergent, if

n—0o0 Up, ) ] ) n n
p = 0 holds: if > v, is convergent, thal_ u,, is also convergent.
n n
Un+1

If Lis defined by:L = lim {/|n,|, orby:L = lim ‘
n— 00 n— 00
L <1

,thenisy_ u,, divergentifL > 1 and convergent if
n

n

1.8.3 Convergence and divergence of functions

f(z) is continuous inc = a only if the upper - and lower limit are equagn fz) = hfn f(z). This is written as:
fla™) = f(a™).

If f(x)is continuous ire and li%n fl(z) = lifn f'(z), than f(x) is differentiable inc = a.

We define:|| f||w := sup(|f(z)| |z € W), and lim f,(z) = f(x). Than holds:{ f,} is uniform convergent if
lim ||f, — fl| =0,0r: V(e > 0)3(N)V(n > N)|| fn — f] <e.

Weierstrass' test: i} ||u, ||w is convergent, thaly_ u,, is uniform convergent.

50 b
We defineS(x) = Z un(x) andF(y) = /f(x,y)d:c := F. Than it can be proved that:
n=N a

[ Theorem | For | Demands onWW/ | Than holds onW |
rows f» continuous, f is continuous
{fn} uniform convergent
c series | S(z) uniform convergent, S'is continuous
u,, continuous
integral | f is continuous F'is continuous
rows fr can be integrated, f» can be integrated,
{fn} uniform convergent J fx)dz = lim [ f,dx
n—oo
I series | S(z) is uniform convergent, S can be integrated;, Sdz = 3 [u,dx
u, can be integrated
integral | f is continuous JFdy = [ f(z,y)dzdy
rows {fn} €C7L {f"} unif.conv— ¢ | f' = ¢(x)
D series | u, €C71; Y u, conv;d ) u.c. | S'(z) =S ul(z)
integral | 0f/dy continuous Fy= [ fy(z,y)dx
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1.9 Products and quotients

Fora,b,c,d € IR holds:

Thedistributive property : (a + b)(¢ + d) = ac + ad + bc + bd
Theassociative property a(bc) = b(ac) = ¢(ab) anda(b + ¢) = ab + ac
Thecommutative property: a + b = b+ a, ab = ba.

Further holds:

a — b 2n—1 2n—2 2n—372 o2n—1 a*rtt — Pt . 2n—k .2k

W:a ia b+a biib 5 aier:kz::Oa b
Sib3

(a+b)(a®>+ab+b?) =a®+b*, (a+b)(a—0b)=a®+b*, a4 = = a® F ba + b*

1.10 Logarithms

Definition: “log(z) = b < a’ = z. For logarithms with base one writesin(z).

Rules log(z™) = nlog(z), log(a) 4 log(b) = log(ab), log(a) — log(b) = log(a/b).

1.11 Polynomials

Equations of the type
n
Z akmk =0
k=0

haven roots which may be equal to each other. Each polynoptial of ordern > 1 has at least one root if1. If
all a;, € IR holds: whenr = p with p € € a root, tharp* is also a root. Polynomials up to and including order 4
have a general analytical solution, for polynomials with ordef there does not exist a general analytical solution.

Fora,b,c € IR anda # 0 holds: the 2nd order equatiaix? + bz + ¢ = 0 has the general solution:

. —b+ Vb% — dac
h 2a

Fora,b,c,d € IR anda # 0 holds: the 3rd order equatian:® + bxz? + cx + d = 0 has the general analytical
solution:

B 3ac — b2 b
o= 92K 3a
I _E+3ac—b2_i+i§( 3ac—b2)
3 2 ' 18a2K  3a 2 942K

1/3

. 9abc — 27da? — 263 /3 V4ac® — 202 — 18abed + 27a2d2 + 4db>

with K = . +
54a3 18a2

1.12 Primes

A primeis a numbeg IN that can only be divided by itself and 1. There are an infinite number of primes. Proof:

suppose that the collection of primé&swould be finite, than construct the numher= 1 + J] p, than holds
peP

q = 1(p) and soQ cannot be written as a product of primes frémThis is a contradiction.
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If 7(x) is the number of primes z, than holds:

m &)y and m Sy
2 () ST
5 In(t)

For eachV > 2 there is a prime betweeN and2N.
The numbers, := 2% + 1 with k£ € IN are calledrermat numbersMany Fermat numbers are prime.

The numbers\/;, := 2* — 1 are calledMersenne numbersThey occur when one searches farfect numbers
which are numbersa € IN which are the sum of their different dividers, for examg@le= 1 + 2 + 3. There
are 23 Mersenne numbers flor< 12000 which are prime: fok € {2,3,5,7,13,17,19, 31,61,89, 107,127,521,

607,1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213}.

To check if a given number is prime one can use a sieve method. The first known sieve method was developed by
Eratosthenes. A faster method for large numbers are the 4 Fermat tests, who don’t prove that a number is prime but
give a large probability.

1. Take the first 4 primesi = {2, 3,5, 7},
2. Takew(b) = b"~! mod n, for eachp,

3. If w = 1 for eachb, thenn is probably prime. For each other valuewfr is certainly not prime.




Chapter 2

Probability and statistics

2.1 Combinations

The number of possibleombinationof k£ elements fromn elements is given by

(%)= mom

The number opermutationof p from n is given by

= (Z)

The number of different ways to classify elements in groups, when the total number of elementd/isis

N!

2.2 Probability theory

The probabilityP(A) that an eventl occurs is defined by:

wheren(A) is the number of events whehoccurs andh(U) the total number of events.

The probabilityP(—A) that A does notoccur is: P(—A) = 1 — P(A). The probabilityP(A U B) that A and
B bothoccur is given by:P(A U B) = P(A) + P(B) — P(AN B). If A andB are independent, than holds:
P(ANB) = P(A)-P(B).

The probabilityP(A|B) that A occurs, given the fact thd occurs, is:
P(ANB)
P(A|B) = ———
(AIB) = =5

2.3 Statistics

2.3.1 General

The averageor meanvalue (x) of a collection of values is{x) = >, x;/n. Thestandard deviatiorr, in the
distribution ofzx is given by:
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Thecovariancer,, of 2 andy is given by::

Thecorrelation coefficient, of z andy than becomes:,, = 0., /0,0y.

The standard deviation in a variabfiéx, y) resulting from errors i andy is:

af 2 of 2 of of
2 £l
Ty = (630%) <6y 0y> Ox Oy Tay

2.3.2 Distributions

1. The Binomial distribution is the distribution describing a sampe with replacement. The probability for

success ip. The probabilityP for k successes in trials is than given by:
Pz =k)= (Z)pk(l —p)" "

The standard deviation is given by = \/np(1 — p) and the expectation valueds= np.

2. The Hypergeometric distribution is the distribution describing a sampeling without replacement in which

the order is irrelevant. The probability férsuccesses in a trial witd possible successes aimdpossible

failures is then given by:
<A) ( B >
Pla= k)= F/\n—F/

()

3. The Poisson distribution is a limiting case of the binomial distribution when— 0, n — oo and also
np = A is constant.

The expectation value is given by=nA/(A + B).

)\we—A

P(x) -

This distribution is normalized ty _ P(z) = 1.

=0

4. The Normal distribution is a limiting case of the binomial distribution for continuous variables:

P) = ——ew <§ (‘T U<x>>2>

5. The Uniform distribution occurs when a random numbeis taken from the set < = < b and is given by:

— if a<z<b

P(z) =0 in all other cases

(b—a)*

() =1(b—a) ando? = B
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6. The Gamma distribution is given by:
xa—le—x/ﬁ

Plr)= ——
| 0= T
with o > 0 and3 > 0. The distribution has the following properties:) = a3, 0% = a32.

if 0<y<oo

7. The Beta distribution is given by:
r (1 - x)Pt
Bla, B)

P(z) =0 everywhere else
2 af

g =

(0%
a+ 3’ (a+B8)2(a+p+1)

P(z) = if 0<z<1

and has the following propertieét) =

For P(x?) holds:a = V/2 andj3 = 2.
8. The Weibull distribution is given by:

Plx)=—2"""e™ if 0<z<ocoAaAB>0

g
P(z) =0 in all other cases
The average i$z) = 3'/°T((a + 1)a)
9. For atwo-dimensional distribution holds:
Py (1) :/P(xl,xg)dxg , Pa(x9) :/P(Jcl,xg)dml

with

IE1,=’U2 // 331,=’U2 ICl,fﬂzdﬂﬁdfﬂz ZZQP

1 X2

2.4 Regression analyses

When there exists a relation between the quantitiasdy of the formy = ax + b and there is a measured sgt
with relatedy;, the following relation holds fos andb with & = (21, 22, ..., 2,,) andé' = (1,1, ..., 1):

J—aZ —bee< & é>"t

From this follows that the inner products are 0:

o
™)

with (Z,2) = Y. 22, (Z,9) = > ziyi, (T,€) = Zacz and(¢, €) = n. a andb follow from this.

A similar method works for higher order ponnomlaI fits: for a second order fit holds:

7 —ax? —bi —cé e< a2, 7,8 >+

with 22 = (22, .., 22).

e n

Thecorrelation coefficient is a measure for the quality of a fit. In case of linear regression it is given by:

ny xy—> ryy
Vi a2 — (o)) nXy? - (X v)?)

T =




Chapter 3

Calculus

3.1 |Integrals

3.1.1 Arithmetic rules

The primitive functionF'(z) of f(z) obeys the ruld”’(x) = f(x). With F(x) the primitive of f(x) holds for the
definite integral

If w = f(z) holds:

b f(b)
/ o(f (2))df (z) = / o(u)du
a f(a)

Partial integration : with F' andG the primitives off andg holds:

A derivative can be brought under the intergral sign (see section 1.8.3 for the required conditions):

z=h(y) z=h(y)
d _ of(@y) , dg(y) dh(y)
dy /()f(:c,y)da: = /() oy @ foWw)hy)=5 =+ F(hly).y) ==
=9y z=g(y

3.1.2 Arc lengts, surfaces and volumes

The arc lengtif of a curvey(x) is given by:

with
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The volumeV of a solid of revolution is:

V= w/fQ(ac)da:

3.1.3 Separation of quotients

Every rational functionP(z)/Q(x) where P and @ are polynomials can be written as a linear combination of
functions of the typéx — a)* with k € Z, and of functions of the type
PT+q
((w—ap + 22"
with b > 0 andn € IN. So:

pl@) N~ Ax p(x)
(z —a) kz:; (z—a)k " ((x—0)2+c2)"

Recurrent relation: for # 0 holds:

/ dx B i T n 2n —1 / dx
(22 + 1)t 2p (22 4+ 1) 2n (x2 +1)»

3.1.4 Special functions

Elliptic functions

Elliptic functions can be written as a power series as follows:

o

(2n —1)!
\/1— k2sin?(z) = Z 2n7'1' =1 k*" sin®" ()

1

— (2n — 1)” 2n 12
—.2 = 1+Zwk Sin L(l‘)
1 — k2 sin®(z) n=1

with n!! = n(n — 2)IL.

The Gamma function

The gamma functiofi'(y) is defined by:

I'(y) = /e_xmy_ldx
0

One can derive thdf(y + 1) = yT'(y) = y!. This is a way to define faculties for non-integers. Further one can
derive that

o

L(n+1) = g@n — 1)l and T (y) = /e_xacy_l In"(z)dz
0

The Beta function

The betafunctior(p, ¢) is defined by:

1
Bp,q) = [ 2?71 (1 —2)9 'da
/

with p andg > 0. The beta and gamma functions are related by the following equation:

L'(p)I'(q)

B(p,q) = T+ q)
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The Delta function

The delta functiod () is an infinitely thin peak function with surface 1. It can be defined by:

' _ 0 forlz| >¢
§(z) = 6112(1) P(e,r) with P(e,z)=q 1 whenz] < =
2e
Some properties are:
/ d(x)de =1, / F(z)o(z)dx = F(0)

3.1.5 Goniometric integrals

When solving goniometric integrals it can be useful to change variables. The following holds if one defines
tan(3x) = t:

2dt 11— 2t
= m s OS(I) = H—tz 5 Sln(ﬂj) = m

Each integral of the typd R(z, Vaz? + bz + ¢)dx can be converted into one of the types that were treated in
section 3.1.3 After this conversion one can substitute in the integrals of the type:

/R(x,\/:cQJrl)da: : x=tan(p),dr = de of Va2+1=t+zx

cos(p)

/R(az, V1—a2)dz : x=sin(p),dz =cos(p)dp of V1—22=1—tz

1 .
/R(Jc, 22 —-1)dx : x= ydx = sin() dp of Va2 —1=x—1t
cos(yp) cos?(p)

dzr

These definite integrals are easily solved:

/2

/ cos™(x) sin™(z)dx =

0

(n—D!(m — D' 7/2 whenm andn are both even
(m +n)!! 1 inall other cases

Some important integrals are:

00 00 o

/ zde w2 / ?de 7 / de 7
ed +1 1242’ (e*+1)2 3 7 Jer+1 15

0 —00 0

3.2 Functions with more variables

3.2.1 Derivatives

Thepartial derivativewith respect tac of a functionf (z, y) is defined by:

(ﬂ) = lim f(ﬂ?o + h, yo) — f (o, yO)

ox h—0 h

Thedirectional derivativen the direction ofx is defined by:

8_f — lim f(zo + recos(a), yo + rsin(a)) — f(zo, yo) _ (ﬁf, (sin @, cosa)) = Vf_; U
da rlo r 7]
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When one changes to coordinafés (u, v), y(u,v)) holds:

o] _0for 0oy
ou Oxdu Oyou

If z(t) andy(t) depend only on one parametdrolds:

0f 9fdr _9fdy

ot~ owdt | oydt
Thetotal differentialdf of a function of 3 variables is given by:

_of . ot of
df = axdm—i— 8ydy+ aZdz

So
ﬁ_g gdy of dz

da:_8:c+8y% 9z dx

Thetangentn pointZ, at the surface (z, y) = 0 is given by the equatiofi, (Zo)(z — xo) + fy(Z0)(y — yo) = 0.

Thetangent planeén Z is given by: f,.(Zo)(z — xo) + fy(Z0)(y — yo) = z — f(Zo).

3.2.2 Taylor series

A function of two variables can be expanded as follows in a Taylor series:
N | or or
flxo+hyo + k) = pz:(:)g (h@ + ka—yp) f(zo,y0) + R(n)

with R(n) the residual error and
81) 5'p _ u p mipp—m apf(a7 b)
<h7+k7)f(a,b) E ( >h Epmm —

axmayp—m

3.2.3 Extrema

When f is continuous on a compact boundarfthere exists a global maximum and a global minumumjffam

this boundary. A boundary is called compact if it is limited and closed.

Possible extrema of(x,y) on a boundary” € IR? are:

1. Points oV wheref(x, y) is not differentiable,

2. Points wher&/ f = 0,

3. If the boundary is given byy(z, ) = 0, than all points wher® f(z,y) + AV (z, y) = 0 are possible for

extrema. This is the multiplicator method of Lagrangés called a multiplicator.

The same as ifR? holds inIR? when the area to be searched is constrained by a coripaatdV is defined by

v1(z,y, z) = 0andys(z, y, z) = 0 for extrema off (x, y, z) for points (1) and (2). Paint (3) is rewritten as follows:

possible extrema are points Whé&rd (z,y, z) + M Vi (2,1, 2) + AaVia(z,y, 2) = 0.
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3.2.4 TheV-operator
In cartesian coordinatés, y, z) holds:
- o ., o 0
V = $ei + a—yey + &ez
_of, O 0,
gradf = Fpfat g% T g5°
. . Oagy 0Oay  Oa,
diva = or dy 0z
el = (202 0oy (00a Das), | (01 Dar),
N oy 0z ) ™" 0z ox )Y or oy ) ©
0%f  0*f O*f
2p _ YS9 9]
Viio= O0x? + oy? + 0722
In cylindrical coordinatesr, ¢, z) holds:
- o_. 10, o
Vo= oot et e
_ of, Lof.  of.
gradf = ar e+ — 890 o T 5, €
da a 10a da
div @ R
v or r 0y 0z
10a da da da da a 10a
1 — - 4 _ %] T _ _Z — _LP _(p _ = i —»Z
cuta <r6<p 82) +<82 67‘>%+<8r r 7“&,0)6
vy 82_f 1af 1 82f 82f
oz ror | r2op? | 922
In spherical coordinatgs, 6, ¢) holds:
6 — ﬁ“ + lg“ + ;i"
T o T 9% T rsing 8gae<p
I 3fq 1 9f,
gradf = ar " + r 90" rsing 830
divd — Oa, 2a, 1% ag 1 %
V= Ty r r 00  rtanf rsinf Op
. 10a ag 1 Oap) . 1 9da, Oa a .
1g = [19%% _ 990 & _ Yy G
cuta <r 00  rtanf rsind &p)e Jr(rsiné’ Op or 7“)69+
Jdayg a_.g B laa, p
or r 00
vzf_aQ_fza_f;ﬁ Lo 1 g
o2 rOr  r2002  r2tanf 00 r2sin2 6 0p?

General orthonormal curvilinear coordinatesv, w) can be derived from cartesian coordinates by the transforma-
tion & = Z(u, v, w). The unit vectors are given by:

1 0
h,l ﬁu’

1 0%
hg 81}

1 0%
h3 aw

—

€y =

—

€y = Cw

where the termg,; give normalization to length 1. The differential operators are than given by:

Lo,
hl ou “

Lor,
h2 ov v

1S,
h3 ow v

gradf
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- 6 0
diva = h1h2h3 thdau % hlav) ow (h1 hgaw))
R 1 ﬁ(hdaw hgav (hiay) O(hsaw)\ -
1 = - - v
curta h2h3 ( > hghl ( ow ou vt
1 a(hgav . hlau
hlhg ou

2, 1 ﬂ hohs 8f hshq 8f hihs 8f
Vil = hihohg [au h1 du +81} ho v +8w h3 ow

Some properties of the-operator are:

div(¢?) = ¢divi + grade - ¥ curl(¢0) = gcurld + (gradg) x ¢ curl gradp = 0
div(@ x ¥) = v+ (curl®d) — @ - (curld)  curl curld = grad dive’ — V27 div curly =0
div grad¢g = V2¢ V25 = (V2uy, VZug, V203)

Here,v is an arbitrary vectorfield angl an arbitrary scalar field.

3.2.5 Integral theorems

Some important integral theorems are:
Gauss: ﬁ(ﬁ- i)d*A = ///(divﬁ)d3v
Stokes for a scalar field?{(qs - &)ds = //(ﬁ x grade)d? A
Stokes for a vector field%(ﬁ- & )ds = //(curh_)'- i)d* A

this gives: #(curh’ﬁ f)d*A =0

Ostrogradsky: ﬁ(ﬁ x U)d*A = ///(curlﬁ)d3A
Gomaa— [[[@aaoay

Here the orientable surfadg d> A is bounded by the Jordan curvg).

3.2.6 Multiple integrals

Let A be a closed curve given bf(z, y) = 0, than the surfacd inside the curve inR? is given by

i o s

Let the surfaced be defined by the function = f(z,y). The volumeV bounded byA and thexy plane is than
given by:

- / f(a, y)dady

The volume inside a closed surface definectby f(z,y) is given by:

V:///d3V://f(ac,y)dxdy:// dedydz
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3.2.7 Coordinate transformations

The expressiong?A andd®V transform as follows when one changes coordinates to (u, v, w) through the
transformation: (u, v, w):

V:///f(ac,y,z)dxdydz:///f(f(ﬁ)) g—z dudvdw
In IR? holds:
0T | wy
ou | Yu Yo

Let the surfaced be defined by = F(z,y) = X (u, v). Than the volume bounded by theg plane andF' is given

by:
F(@)d2A = f(*(*))‘a—X a—X‘d do = [ f(e,y, Fle,p) /1 + 0.F2 + 0, F2dud
/S/ X /G/ r\u a’u X av uav /G/ T,y T,y \/ xay

3.3 Orthogonality of functions

The inner product of two functions(z) andg(z) on the intervala, b] is given by:

b

(f.9) = / f(@)g(e)de

or, when using a weight functign(x), by:

b

(f.9) = / p(2)f (2)g(x)da

a

Thenorm|| f|| follows from: || f||> = (f, f). A set functionsf; is orthonormalif (f;, f;) = &;;.

Each functionf (x) can be written as a sum of orthogonal functions:
o
f) =Y cigi()
i=0

andy_ ¢ < ||f||*. Let the sey; be orthogonal, than it follows:

f7gi
(giagi>

C; —

3.4 Fourier series

Each function can be written as a sum of independent base functions. When one chooses the orthogonal basis
(cos(nzx), sin(nzx)) we have a Fourier series.

A periodical functionf (z) with period2L can be written as:

f(z) =ao + i {an cos (%) + by, sin (m;_x)}
n=1

Due to the orthogonality follows for the coefficients:
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A Fourier series can also be written as a sum of complex exponents:

with -
_ 1 f( ) —'ina;d
Cp = o T)e T

The Fourier transformof a functionf(z) gives the transformed functiof(w):

£ 1 r —iwx
flw) = \/—274 fx)e dx

The inverse transformation is given by:

N =

[f@h)+ f(=7)] = # / fw)e™*dw

wheref(z") andf(x~) are defined by the lower - and upper limit:

fl@) =lim f(z) , f(a®)=1lim f(z)

zTa xla

For continuous functions i§ [f(z 1) + f(z7)] = f(=).
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Differential equations

4.1 Linear differential equations

4.1.1 Firstorderlinear DE

The general solution of a linear differential equation is giveryRy= yu + yp, Wwhereyy is the solution of the
homogeneous equatiamdyp is aparticular solution

A first order differential equation is given by (z) + a(x)y(z) = b(x). Its homogeneous equationy§z) +
a(z)y(z) = 0.
The solution of the homogeneous equation is given by

I

Substitution ofkxp(Ax) in the homogeneous equation leads todharacteristic equatiot + a = 0
= A= —a.

Suppose thai(x) = a =constant.

Supposé(x) = aexp(pz). Than one can distinguish two cases:
1. )\ # p: aparticular solution isyp = exp(ux)

2. A\ = u: aparticular solution isyp = x exp(ux)

When a DE is solved byariation of parametersne writes:yp(z) = yu(x)f(z), and than one solvef(x) from
this.

4.1.2 Second order linear DE

A differential equation of the second order with constant coefficients is givep'fy) + ay’(z) + by(z) = c(x).
If ¢(x) = ¢ =constant there exists a particular solutign= c/b.

Substitution ofy = exp(\z) leads to the characteristic equatidh+ a\ + b = 0.
There are now 2 possibilities:
1. A1 # Ao: thanyp = aexp(Mz) + Bexp(A2).
2. A\ = Ao = Xl thanyy = (a + Bz) exp(Az).
If ¢(x) = p(z) exp(ux) wherep(z) is a polynomial there are 3 possibilities:
1. A1, A2 # pt yp = q() exp(pz).
2. M = p, A2 # i yp = wq(z) exp(uz).
3. A1 = X = u yp = 22q(z) exp(uz).
whereg(z) is a polynomial of the same order p&).

When:y" (z) + w?y(x) = wf(x) andy(0) = y'(0) = 0 follows: y(x) = [ f(x)sin(w(z — t))dt.

Ot—x

20
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4.1.3 The Wronskian

We start with the LDE/” (z) + p(z)y’ (x) + q(x)y(z) = 0 and the two initial conditiong(zy) = Ko andy’(zo) =
K;. Whenp(z) andg(x) are continuous on the open interyahere exists a unique solutigiix) on this interval.

The general solution can than be writternyé@s) = c1y1(x) + cay2(z) andy; andy- are linear independent. These
are alsaall solutions of the LDE.

TheWronskianis defined by:

W(y1,y2) = ‘ y/l y? = y1Ys — Y2U)

Y1 Y2

y1 andy, are linear independent if and only if on the interyalhen3z, € I so that holds:
W (y1(o), y2(x0)) = 0.

4.1.4 Power series substitution

When a serieg = 3 a,z™ is substituted in the LDE with constant coefficiept{z) + py’(z) + qy(z) = 0 this
leads to:

Z [n(n —1Danz"? 4+ pna,z" ' + qan:r”} =0

n

Setting coefficients for equal powersmoequal gives:
(n+2)(n+ Dant2 + p(n+ aps1 + gan, =0

This gives a general relation between the coefficients. Special cases-abel, 2.

4.2 Some special cases

4.2.1 Frobenius’ method

Given the LDE
Py(x) | blx)dy(z) | e(x)
2 s de T @ =0

with b(z) andc(z) analytical atz = 0. This LDE has at least one solution of the form

(o)
yi(z) =z Z anz™ with ¢ =1,2

n=0

with r real or complex and chosen so that# 0. When one expandgz) andc(z) asb(x) = b + byz + bax? + ...
andc(z) = co + c17 + c22? + ..., it follows for r:

12+ (bo — 1)r+co =0
There are now 3 possibilities:
1. ry = ro: thany(z) = yi(x) In |z] + ya2(z).
2. r1 —ro € IN: thany(z) = kyi(x) In 2| + y2(x).

3. —ro # Z: thany(z) = y1(x) + ya2(z).
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4.2.2 Euler
Given the LDE 2y(2) dy ()
d7y(x y(z
2
¥ a2 ar dx
Substitution ofy(z) = z" gives an equation far: 72 + (a — 1)r + b = 0. From this one gets two solutions and
ro. There are now 2 possibilities:

1. rq # ro: thany(x) = Cra™t + Caz™™.

+by(x) =0

2. r; = ro =i thany(x) = (Cy In(x) + Cy)z".

4.2.3 Legendre’s DE
Given the LDE

dy(x) dy(x)
-2
dx? T
The solutions of this equation are given ®r) = aP,(x) + by2(z) where theLegendre polynomial®(x) are

defined by:
Fa(@) = 2 < 2 >

(1—2?) +n(n—1y(z)=0

For these holds|| P, || = 2/(2n + 1).

4.2.4 The associated Legendre equation

This equation follows from thé-dependent part of the wave equatiGA¥ = 0 by substitution of
& = cos(d). Than follows:
d dP(§)
e ¢ _ 2\ %S 2y 2 _
¢ s>d€<<1 €)= >+[0<1 §%) —m’P(¢) =0

Regular solutions exists onlyd = I(l 4+ 1). They are of the form:

m/2 dlm‘PO(f) (1 _ 62)\m|/2 d|m\+l

P = (1= P = e g (€ - )
For|m| > lis Pll"”‘(g) = 0. Some properties aP’ (£) zijn:
I oo
_/1 POPOE = ggn 3RO = e
This polynomial can be written as:
P(€) = %/(5 + /€ — 1cos(6)) dd
0

4.2.5 Solutions for Bessel's equation
Given the LDE

d’y(z) | dy(x)
2

T2 T dx
also calledBessel’s equatiarand the Bessel functions of the first kind

+(@® = v)y(x) =0

o (71)mz2m

Jo(w) = Z 22mtvmIT(v 4+ m+ 1)

m=0
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for v := n € IN this becomes:

& (71)mz2m

m=0

Whenv # Z the solution is given by (z) = aJ, (x) + bJ_, (). But because for € Z holds:
J_n(z) = (—1)"J,(z), this does not apply to integers. The general solution of Bessel's equation is given by
y(x) = aJ,(z) + bY, (x), whereY, are theBessel functions of the second kind

Jo () co;%)ﬂ; L) and V@) = Jim (@)

Y, (2) =
The equationr?y” (z) + 2y (z) — (22 + v?)y(x) = 0 has the modified Bessel functions of the first kiydr) =
i~V J,(iz) as solution, and also solutioh§, = w[I_, (x) — I, (x)]/[2sin(v)].

Sometimes it can be convenient to write the solutions of Bessel's equation in terms of the Hankel functions

HD(2) = (@) + i¥a(x) , HP (2) = Ju(x) — iVn(2)

4.2.6 Properties of Bessel functions
Bessel functions are orthogonal with respect to the weight funglioh= x.

J_n(z) = (=1)"J,(z). The Neumann function¥,, (z) are definied as:

1

1 & :
Nm@) = %J,m(.]?) h’l(ﬂj) + Z_m Z O[nxQFL

n=0

The following hOIdS:lirr%) Im(z) = 2™, im Ny, (x) = 2~ for m # 0, lin}) No(z) = In(x).

x—0

. eikr giwt ' \/7 ) \/7 .
Tlggo H(r)= — len;o In () = — cos(r — xy) llgr()lo J_n(z) = — sin(x — )

with z,, = 1x(n + 1).

2n dJ,(x
Jn-l—l(x) + Jn—l(m) = ?Jn(m) ) Jn-l—l(x) - Jn—l(m) = _2%

The following integral relations hold:
27 ki
In(z) = QL /exp[i(:c sin(f) — m#)]df = l/cos(:c sin(f) — m#)do
™ s
0 0
4.2.7 Laguerre’s equation

Given the LDE

+ny(z) =0

Solutions of this equation are the Laguerre polynomialé&x):

z qn I e —1)m ,
Ln(x) — %dxn (ac”e ) — Z ( ) (::L)xn

m)!
m=0
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4.2.8 The associated Laguerre equation
Given the LDE

dPy(x) N (m+1 _1) dy(z) . (n+%(m+1>)y(x)=0

dx? x dx x

Solutions of this equation are the associated Laguerre polynofijals):

m (_1)mn| —x,_.—m a-m —z,.n
Ln (.17) = me T A —— (e T )

4.2.9 Hermite

The differential equations of Hermite are:

d*H,,(x) dH,, () d*He,, (z) dHe,, ()
2 2z . +2nH,(z) =0 and p P + nHe,(z) =0
Solutions of these equations are the Hermite polynomials, given by:
dr _ 1,2
Ho(2) = (~1)" exp @x) TDCT)) _ ovame, (av2)
x’r

" (exp(—x?
He, (z) = (—1)"(exp (2?) % =27"?H,(z/V?2)

4.2.10 Chebyshev

The LDE 207 () iU ()
d*Up(x Up(x
) n o n _
(1—2%) T2 3x T +n(n+2)U,(z) =0

has solutions of the form
sin[(n + 1) arccos(x)]

Un(z) =

V1— a2
The LDE ) (@) ()
d°T,(x dl, (x
_ 2 n _ n 2 —
(1—2%) T2 T +n°Th(x) =0

has solutiond’, (z) = cos(n arccos(z)).

4211 Weber

The LDEW//(z) 4 (n + 3 — 12?)W,(z) = 0 has solutionsW,, (z) = He,,(z) exp(—$z?).

4.3 Non-linear differential equations

Some non-linear differential equations and a solution are:

= ayy? + 02 y = bsinh(a(x — x0))

y =a

y = a\/m y = beosh(a(z — x9))
Yy = a\/m y = beos(a(z — o))
Y = a(y® + b?) y = btan(a(z — x¢))
y = a(y® — b?) y = beoth(a(x — x0))
y = a(b® —y?) y = btanh(a(x — x0))

’ b—y b
y ay( b ) Y T Chexp(—ax)
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4.4 Sturm-Liouville equations
Sturm-Liouville equations are second order LDE’s of the form:

¢ (ot

dx dzx > +q(x)y(z) = Am(x)y(z)

The boundary conditions are chosen so that the operator
d d
L= (sa)g ) +ala)

is Hermitean. The normalization functiom(z) must satisfy

b
/ (@) (2)y; (2)de = 5,

Wheny; (z) andyq(z) are two linear independent solutions one can write the Wronskian in this form:

C

p(x)

Yy Y2
w =
(1,92) ‘yi Yh

whereC' is constant. By changing to another dependent variablg, given by: u(z) = y(x)\/p(z), the LDE
transforms into th@ormal form

PUD) | au() =0 with () <+ (ZE)) 2 1@ ala) —Am(a)
T H@u(@) =0 with I(2) (p(x)) 2 p() p()

4
If I(x) > 0, thany”/y < 0 and the solution has an oscillatory behaviout () < 0, thany”/y > 0 and the
solution has an exponential behaviour.

4.5 Linear partial differential equations
45.1 General

Thenormal derivatives defined by:

ou S,
% - (VU, n)

A frequently used solution method for PDE’sigsparation of variablesone assumes that the solution can be written
asu(z,t) = X (z)T'(t). When this is substituted two ordinary DE's f&f(x) and7'(¢) are obtained.

4.5.2 Special cases
The wave equation

Thewave equatiorn 1 dimension is given by

0%u 5, 0%u

92 = 922
When the initial conditions(z, 0) = ¢(x) anddu(z,0)/0t = ¥(x) apply, the general solution is given by:

x+ct

(oot et)+plo— el + 5 [ e

u(zx,t) =

N |
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The diffusion equation

Thediffusion equations:

ou

-~ — DV?

Bn Vu
Its solutions can be written in terms of the propagafofs, =, t). These have the property that
P(z,2',0) = §(z — 2’). In 1 dimension it reads:

1 —(z — :c’)2>
P(z,2',t) = ex <
( ) 2V Dt P 4Dt
In 3 dimensions it reads:

1 (F—&")?
Plea t) = — = -z
(z,2',%) 8(x D)3z P ( 1Dt

With initial conditionu(z,0) = f(z) the solution is:

u(z,t) /f Pz, 2’ t)dx

ou 0%u
o Paz

u(z,t) :/dt’/d:c’g(:c’,t’)P(:c,:c’,tft’)

The solution of the equation
= g(x, t)

is given by

The equation of Helmholtz

The equation of Helmholtz is obtained by substitution.0f, t) = v(Z) exp(iwt) in the wave equation. This gives
for v:

This gives as solutions far.

1. In cartesian coordinates: substitutionof A exp(ik - &) gives:

o(7) = /-.-/A(k)ei’?-fdk

with the integrals ovek 2 = k2.

2. In polar coordinates:

= > (A (kr) + By Ny (kr))e™?

m=0

3. In spherical coordinates:

Y (0, ¢)
\/77

00 l
T 97()0 Z Z AlmJ1+ k’?“ +BlmJl 1(I€T)]

=0 m=—1
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4.5.3 Potential theory and Green’s theorem

Subject of the potential theory are tReisson equatioNV?u = — f(¥') wheref is a given function, and thieaplace
equationV2u = 0. The solutions of these can often be interpreted as a potential. The solutions of Laplace’s
equation are calledarmonic functions

When a vector field’ is given bys = grady holds:

b

/ (#,1)ds = o(F) — (@)

In this case there exist functiogsandw so thatv = gradp + curld.

Thefield linesof the fieldo (2 ) follow from:
I (t) = \O(T)

/é/[uv% + (Vu, Vo)V = g{ug_deA

Thefirst theorem of Greers:

Thesecond theorem of Greést

- ov ou
2, 2 3 _ Rt 2
///[qu vV u]dV#(uan ’Uan>dA
g S

A harmonic function which is 0 on the boundary of an area is also 0 within that area. A harmonic function with a
normal derivative of O on the boundary of an area is constant within that area.

TheDirichlet problemis:

V2u(@)=—f(Z), £€R , u(@)=g(Z) forall Zc S.
It has a unique solution.
TheNeumann probleris:

ou(Z)

2 2\ e .
Vu(@)=—-f(&¥) , T€ R, o

=h(Z) forall e S.

The solution is unique except for a constant. The solution exists if:

—///f(f)d3v = #h(f)dQA
R S

A fundamental solutionf the Laplace equation satisfies:
V2ul(Z) = —6(F)
This has in 2 dimensions in polar coordinates the following solution:

In(r)
2m

u(r) =

This has in 3 dimensions in spherical coordinates the following solution:

u(r) = -
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—.

The equatiorvV?v = —§(F — £) has the solution

1
4 — €|

(@) =

After substituting this in Green’s 2nd theorem and applying the sieve property @f filmection one can derive

Green'’s 3rd theorem:
10u 0 (1
~ BV it 2 4
// =&Y # [ran an( ﬂd
S

—

TheGreen functiorG(z, € ) is defined by V2G = —4(Z — € ), and on boundar§ holdsG(Z, ) = 0. ThanG can
be written as: )
G(Z,€) = ————= +g(&,€
(#,€) o 9(Z,§)

Thang(Z, ) is a solution of Dirichlet's problem. The solution of Poisson’s equa¥iém. = — /(') when on the
boundarysS holds:u(Z) = g(Z), is:

u@) = [[[ c@érs@ev - @ g(f)%i’g)dﬂ
R

S
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Linear algebra

5.1 Vector spaces

G is a group for the operation if:
1. Va,beG=a®bed.
2. (a®b)®c=a®b®Db.
3.decGsothat ® e =e®@a = a.
4. Va € Gda e Gsothatu @ @ = e.

If
50a9b=bR®a

the group is called\belianor commutative Vector spaces form an Abelian group for addition and multiplication:

—.

1-d=a, \Npa) = (A)d, (A + p)(@+b) = Ad + Ab + pd + pb.
W is alinear subspac# Vi, we € W holds: Ay + p € W.

W is aninvariant subspacef V' for the operator if Vw € W holds: Aw € W.

5.2 Basis

For an orthogonal basis hold&;, €;) = c¢d;;. For an orthonormal basis holdg;, €;) = ;.

The set vector$a,, } is linear independent if:

> N =0 & V=0
The set{d,,} isabasisifitis 1. independentand2.=< dy, a3, ... >= > \;d;.

5.3 Matrix calculus

5.3.1 Basic operations

For the matrix multiplication of matriced = a;; and B = by, holds with” the row index and the column index:

Ak preks — omiks(AB); =3 anby
k

where” is the number of rows antithe number of columns.

Thetransposeof A is defined by:a]; = aj;. For this hold{AB)" = BT A" and(A™)~! = (A~!)". For the
inverse matrisholds: (A - B)~! = B~!. A~1. The inverse matrixi—! has the property that - A=! = I and can
be found by diagonalizatiof:4,;| ) ~ (E|A;j1).

29
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The inverse of & x 2 matrix is:

a b\ 1 d —b
c d ad—bc\ —¢ a
Thedeterminant functioD = det(A) is defined by:

det(A) = D(d'*l, 6_7:*2, ceey 6*n)

For the determinantet(A) of a matrixA holds:det(AB) = det(A) - det(B). Een2 x 2 matrix has determinant:

a b
det< . d)adcb

The derivative of a matrix is a matrix with the derivatives of the coefficients:

dA  da;j dAB dA dB
— = d —=B— +A—
a @ M Ta TR
The derivative of the determinant is given by:
ddet(A) - d&l o o dd’g = - da:n
—n = D( o s ey @) + D(dn, o y ooy @p) + ... + D(dy, ..., 7 )

When the rows of a matrix are considered as vectorsadWveankof a matrix is the number of independent vectors
in this set. Similar for theolumn rank The row rank equals the column rank for each matrix.

Let A : V — V be the complex extension of the real linear operator’” — V in a finite dimensional’. ThenA
and A have the same caracteristic equation.

When4;; € IR and¥; + iv3 is an eigenvector ofl at eigenvalue. = A\; + i)\, than holds:
1. A¥) = Mt — \oUz and Avy = Aoy + A\ To.
2. 7 =) — ity is an eigenvalue at* = \; — i\o.
3. Thelinear spar: vy, v5 > is an invariant subspace df.

If k,, are the columns afl, than the transformed space.éfs given by:

-

R(A) =< A&y, ..., Aéy >=<ky, ... by >

If the columnsk,, of an x m matrix A are independent, than the nullspacéd) = {0}.

5.3.2 Matrix equations

We start with the equation
A

CF=
andb +# 0. If det(A) = 0 the only solution ig). If det(A) #

The equation

o Sl

there exists exactly one solutief0.

A-Z=0
has exactly one solutiog 0 if det(A) = 0, and ifdet(A) # 0 the solution ig).
Cramer’s rule for the solution of systems of linear equations is: let the system be written as
A Z=b=dx1 4 ...+ dntn =b
thenz; is given by:

—

D(a17 ey a:j—h 5) C_ij-‘rla ey C_in)
det(A)

Tj =
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5.4 Linear transformations

A transformationd is linear if: A(AZ + 37) = AAT + 3Ag.

Some common linear transformations are:

| Transformation type | Equation |
Projection on the line< @ > P(Z) = (*, 7)a/(d,a)
Projection on the plangi, ) =0 Q) =2 — P(¥)
Mirror image in the line< @ > S(Z)=2P(%)—-%
Mirror image in the planéd, ©) = 0 T(Z)=2Q(%)—¥=4—2P(%)

For a projection holdst — Py (%) L Py (Z) and Py (%) € W.
If for a transformatiomd holds: (AZ,¢) = (Z, Ay) = (AZ, Ay), thanA is a projection.

Let A : W — W define a linear transformation; we define:
o If Sisasubsetol: A(S) = {AZ € W|Z¥ € S}
o If TisasubsetoW: A= (T):={Zc V|A(Z) € T}

ThanA(S) is a linear subspace ¢ and theinverse transformatiosd ™ (7') is a linear subspace f. From this
follows thatA(V) is theimage spacef A, notation:R(A). A~ (0) = Ejy is a linear subspace &f, thenull space
of A4, notation:N(A). Then the following holds:

dim(N(A)) + dim(R(A)) = dim(V)

5.5 Plane and line
The equation of a line that contains the poidndb is:
FT=a+Ab—a)=a+ I

The equation of a plane is:
Z=d+ANb—a)+pu(C—a)=dad+ N1 + pis
When this is a plane ifz?, thenormal vectotto this plane is given by:

N 71 X T2
ny =

|7“1 X 7“2|

A line can also be described by the points for which the line equdti¢d, ) + b = 0 holds, and for a plane V:
(@, %) + k = 0. The normal vector to V is thari/|a|.

The distancel between 2 pointg'andq'is given byd(p,¢) = ||l — 7.
In IR? holds: The distance of a poigitto the line(a@, #) + b = 0 is

This can be generalized fdR™ andC™ (theorem from Hesse).
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5.6 Coordinate transformations

The linear transformatiod from IK™ — IK™ is given by (K = IR of C):
g=A""g

where a column ofd is the image of a base vector in the original.

The matrixA? transforms a vector given w.r.t. a basisnto a vector w.r.t. a basis. It is given by:
AJ = (B(Ady), .., B(Ady))
where((Z) is the representation of the vectow.r.t. basiss.
Thetransformation matrixS? transforms vectors from coordinate systerinto coordinate syster:
SE .= 1P = (B(ay), ..., B(a@n))
andSy - S5 =11
The matrix of a transformatioA is than given by:
Al = (ABe, .., Alé,)

For the transformation of matrix operators to another coordinate system htflds: S A3S5, A% = sgAgsg
and(AB)) = A}BS.

Further isAf = SPAg, A% = A5.S§. A vector is transformed Vi&, = S5 X 5.

5.7 Eigen values

Theeigenvalue equation

AZ =\

8
8

det(A — AII') = 0. The eigenvalues follow from this

with eigenvalues\ can be solved witfA — AII) = 0 =
= H i andTY(A) = Zai,- = Z)‘t

characteristic equation. The following is truist(A)

The eigen valueg,; are independent of the chosen basis. The matrid @f a basis of eigenvectors, withi the
transformation matrix to this basiS,= (E,,, ..., E\, ), iS given by:

A = S7tAS = diag(A1, ..., A\n)

When 0 is an eigen value of thanEy(A) = N (A).

When) is an eigen value ofl holds: A™"# = \"Z.

5.8 Transformation types

Isometric transformations

A transformation issometricwhen: || AZ|| = ||Z]|. This implies that the eigen values of an isometric transformation
are given by\ = exp(iyp) = |A| = 1. Than also holds{AZ, Ay) = (Z,¥).

WhenW is an invariant subspace if the isometric transformatiamith dim(A) < oo, than alsd¥ * is an invariante
subspace.
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Orthogonal transformations

A transformationA is orthogonalif A is isometricandthe inverseA exists. For an orthogonal transformation
holdsOTO = II, so:OT = O~!. If A andB are orthogonal, thad B andA~! are also orthogonal.

Let A : V — V be orthogonal with dirfl/) < co. ThanA is:
Direct orthogonal if det(A) = +1. A describes a rotation. A rotation #k? through anglep is given by:

. ( cos(ip)  —sin(p) >

sin(p)  cos(p)

So the rotation angle is determined by Ttd) = 2cos(y) with 0 < ¢ < 7. Let A\; and ), be the roots of the
characteristic equation, than also holtig\;) = R(A2) = cos(¢), andA; = exp(ip), A2 = exp(—ip).

In IR? holds: \; = 1, A2 = A} = exp(iyp). A rotation overE), is given by the matrix

1 0 0

0 cos(p) —sin(yp)
0 sin(p) cos(p)

Mirrored orthogonal if det(A) = —1. Vectors fromE_; are mirrored byA w.r.t. the invariant subspadé*,. A

mirroring in IR? in < (cos(3¢), sin(3¢)) > is given by:

S_ ( cos(g)  sin(yp) )

sin(p)  — cos()

Mirrored orthogonal transformations iR> are rotational mirrorings: rotations of axisa, > through angle, and
mirror plane< @, >=. The matrix of such a transformation is given by:

-1 0 0

0 cos(p) —sin(p)
0 sin(p) cos(y)

For all orthogonal transformatioii®in /R holds thatO(zZ) x O(7) = O(Z x §).

IR™ (n < o0) can be decomposed in invariant subspaces with dimension 1 or 2 for each orthogonal transformation.

Unitary transformations

Let V be a complex space on which an inner product is defined. Than a linear transforbAiasiomitary if U is
isometricandits inverse transformatiod~ exists. An x n matrix is unitary if U U = II. It has determinant
| det(U)| = 1. Each isometric transformation in a finite-dimensional complex vector space is unitary.

Theorem: for an x n matrix A the following statements are equivalent:
1. Ais unitary,
2. The columns ofd are an orthonormal set,

3. The rows of4 are an orthonormal set.

Symmetric transformations

A transformationA on IR" is symmetridf (AZ,4) = (¥, Ay). Amatrix A € IM™*" is symmetric ifA = AT. A

linear operator is only symmetric if its matrix w.r.t. an arbitrary basis is symmetric. All eigenvalues of a symmetric
transformation belong téR. The different eigenvectors are mutually perpendiculad 1§ symmetric, tham” =

A = A" on an orthogonal basis.

For each matrix3 € IM™*™ holds: B” B is symmetric.
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Hermitian transformations

A transformationd : V — V with V' = €™ is Hermitianif (HZ,y) = (&, Hy). TheHermitian conjugated
transformationd” of Ais: [a;;]7 = [a};]. An alternative notation isA” = AT. The inner product of two vectors
# andy can now be written in the forn(:z, i) = #74.

If the transformationg! and B are Hermitian, than their produgtB is Hermitian if:
[A,B] = AB — BA = 0. [A, B] is called thecommutatoof A andB.

The eigenvalues of a Hermitian transformation belongito
A matrix representation can be coupled with a Hermitian operatoM.r.t. a basis; it is given by L,,,,, =

(€, Lén).

Normal transformations

For each linear transformatiafh in a complex vector spadeé there exists exactly one linear transformatigrso
that(AZ,y) = (Z, By). This B is called theadjungated transformatioof A. Notation: B = A*. The following
holds: (CD)* = D*C*. A* = A~ if Ais unitary andd* = A if A is Hermitian.

Definition: the linear transformatioA is normalin a complex vector spadé if A*A = AA*. Thisis only the case
if for its matrix S w.r.t. an orthonormal basis holdd:f 4 = AA*.

If Ais normal holds:
1. Forall vectorsr € V and a normal transformatiofi holds:

(AT, Aj) = (A"AZ,§) = (AA'T,§) = (A", A™Y)

2. Zis an eigenvector ofl if and only if ¥ is an eigenvector ofi*.
3. Eigenvectors ofl for different eigenvalues are mutually perpendicular.
4. If E, if an eigenspace from than the orthogonal complemehBt- is an invariant subspace df.

Let the different roots of the characteristic equatiomdbe 3; with multiplicities n;. Than the dimension of each
eigenspacé’; equalsn;. These eigenspaces are mutually perpendicular and each Yeetdf can be written in
exactly one way as

=Y & with &€V,
3
This can also be written ag’; = P,z whereP, is a projection orl/;. This leads to thepectral mapping theorem
let A be a normal transformation in a complex vector spécgith dim(V') = n. Than:

1. There exist projection transformatioRs 1 < i < p, with the properties

e P P;=0fori#j,
e P+ ..+ P, =1,
o dimP (V) + ... +dimP,(V) =n

and complex numbexs,, ..., o, SO thatd = o Py + ... + o, Pp.
2. If Alis unitary than hold$y;| = 1 Vi.

3. If Ais Hermitian thany; € IR Vi.
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Complete systems of commuting Hermitian transformations

Considerm Hermitian linear transformationd; in an dimensional complex inner product spdce Assume they
mutually commute.

Lemma: if E) is the eigenspace for eigenvalddrom A,, thanF, is an invariant subspace of all transformations
A;. This means that if € F\, thanA;z € E\.

Theorem. Considern commuting Hermitian matriced;. Than there exists a unitary matiixso that all matrices
Ut A;U are diagonal. The columns bf are the common eigenvectors of all matricks

If all eigenvalues of a Hermitian linear transformation im-alimensional complex vector space differ, than the
normalized eigenvector is known except for a phase fastpfi«).

Definition: a commuting set Hermitian transformations is caltedhpletdf for each set of two common eigenvec-
tors;, v; there exists a transformatiofy, so thatv; andv; are eigenvectors with different eigenvaluesif.

Usually a commuting set is taken as small as possible. In quantum physics one speaks of commuting observables.
The required number of commuting observables equals the number of quantum numbers required to characterize a
state.

5.9 Homogeneous coordinates

Homogeneous coordinates are used if one wants to combine both rotations and translatiemsaitrix transfor-
mation. An extra coordinate is introduced to describe the non-linearities. Homogeneous coordinates are derived
from cartesian coordinates as follows:

. wx X
_ | wy _| Y

Y T wz o Z
cart w w

hom hom

sox = X/w,y = Y/wandz = Z/w. Transformations in homogeneous coordinates are described by the following
matrices:

1. Translation along vectdiXy, Yy, Zo, wo):

wg 0 0 Xp

_ 0 we 0 Yo
= 0 0 wy Zo
0 0 0 wo

2. Rotations of the:, y, z axis, resp. through angles 3, ~:

1 0 0 0 cos@ 0 sing 0
0 cosa —sina 0 0 1 0 0
Ra(a) = 0 sina cosa O Ry(8) = —sin8 0 cosfB O
0 0 0 1 0 0 0 1
cosy —siny 0 O
| siny cosy 0 O
0 0 0 1

3. A perspective projection on image plane- ¢ with the center of projection in the origin. This transformation
has no inverse.

(e o)
S O OO

SO O
~ = O O




36 Mathematics Formulary by ir. J.C.A. Wevers

5.10 Inner product spaces

A complex inner product on a complex vector space is defined as follows:

1. (@b) = (b,a),
2. (@, B1by + Boba) = B1(@,b1) + B2(d,b2) forall @ by, bo € V andfy, Bz € C.
3. (@,d@) >0foralld eV, (d,a)=0ifand onlyif @ = 0.

Due to (1) holds(a, @) € IR. Theinner product spac&™ is the complex vector space on which a complex inner
product is defined by:
(@b)=> arb;
i=1

For function spaces holds:
b
(r9) = [ £t

For eachi the length|a || is defined by:|@ || = \/(@, @ ). The following holds]|@||—||b|| < ||@+b ]| < ||@||+]|5]],
and withy the angle betweefiandb holds: (@, b) = ||@]| - || || cos(¢).

Let {as,...,d,} be a set of vectors in an inner product sp&te Than theGramian Gof this set is given by:
Gi; = (d;,d;). The set of vectors is independent if and onlgéf(G) = 0.

A setisorthonormalif (@;,a;) = ;5. If €1, €2, ... form an orthonormal row in an infinite dimensional vector space
Bessel’s inequality holds:

o0
I1Z]1* =" 1@ &)
i=1
The equal sign holds if and only ifim ||Z, — Z| = 0.
n—oo

The inner product spad® is defined inC'> by:

o0
2= {Ei: (a1,as9,...) | Z lan|? < oo}
n=1

A space is called #lilbert spaceif itis ¢ and if also holds:lim |a,+1 — a,| = 0.
n—oo

5.11 The Laplace transformation

The class LT exists of functions for which holds:

1. OneachintervgD, A], A > 0there are no more than a finite number of discontinuities and each discontinuity
has an upper - and lower limit,

2. 3ty € [0,00 > anda, M € IR so that fort > ¢, holds:| f(t)| exp(—at) < M.

Than there exists a Laplace transform for
The Laplace transformation is a generalisation of the Fourier transformation. The Laplace transform of a function
f(t)is, withs € C and¢ > 0:

F(s)= [ f(t)e *'dt
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The Laplace transform of the derivative of a function is given by:

£(F090) = =FO0©) = s D(0) = 5"1F(0) + 5 F(s)
The operatol has the following properties:

1. Equal shapes: i > 0 than

2. Damping:L (e” ' f(t)) = F(s + a)

3. Translation: Ifa > 0 andg is defined byg(t) = f(t —a) if t > a andg(t) = 0 fort < q, than holds:
L(g(t)) = e L(f(t))-

If s € IR than holdsR(Af) = L(R(f)) andS(Af) = L(S(f)).

For some often occurring functions holds:

L /= [F)=L(/W)=]
tn

2ot _ —n—1
e (s—a)
S—a
eat cos(wt) m
at 3 w
(§] Sln(wt) m
o(t—a) exp(—as)

5.12 The convolution

The convolution integral is defined by:

(f+9)(t)

/f@M@*uwu
0

The convolution has the following properties:
1. fxg€LT
2. L(f*g) = L(f) - L(g)
3. Distribution: f « (g +h) = fxg+ f*h
4. Commutative)f x g =g * f
5. Homogenity:f * (Ag) = Af x g

If L(f) = Fy- Fy, thanisf(t) = f1 * fo.

5.13 Systems of linear differential equations
We start with the equatiofi = A7’. Assume thaf = #'exp(At), than follows: A7 = A\7. In the2 x 2 case holds:
1. A= Ao thanf(t) = Z'Uz eXp()\,-t).

2. A\ # Ao thani(t) = (dt + U) exp(At).
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Assume that = « + ig is an eigenvalue with eigenvectdy than\* is also an eigenvalue for eigenveciot.
Decompose’ = u + iw, than the real solutions are

c1[ii cos(Bt) — wsin(Bt)]e™ + ca[vcos(Bt) + i sin(Bt)]e™

There are two solution strategies for the equafica A"
1. Let¥ = Texp(M) = det(A — \2I) =0

2. Introduce:x = u andy = v, this leads ta: = @ andjj = ©. This transforms a-dimensional set of second
order equations into 2n-dimensional set of first order equations.

5.14 Quadratic forms

5.14.1 Quadratic forms in IR?

The general equation of a quadratic form i&" Az + 227 P 4+ S = 0. Here, A is a symmetric matrix. IfA =
S—1AS = diag(\1, ..., A\n) holds:@” A+ 2iwT P+ S = 0, so all cross terms are @.= (u, v, w) should be chosen
so that degtS) = +1, to maintain the same orientation as the systeny, z).

Starting with the equation
ax® + 2bxy +cy? +dr+ey+f=0

we havelA| = ac — b%. An ellipse hagA| > 0, a paraboldA| = 0 and a hyperboleA| < 0. In polar coordinates

this can be written as:
€p

1 —ecos(f)
An ellipse has: < 1, a parabola = 1 and a hyperbola > 1.

T =

5.14.2 Quadratic surfaces ini?

Rank 3:
x2 2 2

Py taytry=d
e Ellipsoid:p =q¢=r=d =1, a,b, care the lengths of the semi axes.
e Single-bladed hyperboloigi=¢g=d=1,r = —1.
e Double-bladed hyperboloidi=d =1,p = ¢ = —1.
e Conep=q=1,r=-1,d=0.
Rank 2: ) )
p:cQ " qg;Q z _d
e Elliptic paraboloidp =¢=1,r=—-1,d=0.
e Hyperbolic paraboloidp =r = —1,¢=1,d = 0.
o Elliptic cylinder:p=q=—-1,r=d = 0.
e Hyperboliccylinderp=d=1,¢=—-1,r=0.
e Pairofplanesp =1,¢q=—1,d = 0.

Rank 1:
py’ +aqr=d

e Parabolic cylinderp, ¢ > 0.
e Parallel pair of planesi > 0, ¢ =0, p # 0.
e Double planep # 0, ¢ =d = 0.




Chapter 6

Complex function theory

6.1 Functions of complex variables

Complex function theory deals with complex functions of a complex variable. Some definitions:
fisanalyticalonG if f is continuous and differentiable ¢h

A Jordan curves a curve that is closed and singular.

If K'is a curve inC with parameter equation = ¢(t) = x(t) + iy(t), a < ¢t < b, than the lengttL of K is given

' - (8

The derivative off in pointz = a is:

dz
dt

b
w=/wmw

z—a zZ—a
If f(2) = u(x,y) +iv(x,y) the derivative is:
_Qu 00 ou o
dx ox Oy Oy
Setting both results equal yields the equations of Cauchy-Riemann:

ou Ov ou ov

dx 9y ' 9y Oz

f'(2)

These equations imply th&t%« = V2v = 0. f is analytical ifu andv satisfy these equations.

6.2 Complex integration

6.2.1 Cauchy’s integral formula

Let K be a curve described by= ¢(t) ona < ¢t < bandf(z) is continuous or. Than the integral of over K
is:

b
/ﬂ@w:/}wmw@ﬁ”“@””mwfﬂ@
K a

Lemma: let K be the circle with center and radius- taken in a positive direction. Than holds for integer
ij{ dz _Joifm#£1
omi J (z—a)m | 1if m=1
K
Theorem: if L is the length of curve<” and if | f(z)| < M for z € K, than, if the integral exists, holds:

[ s

K

<ML

39
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Theorem: let f be continuous on an aréaand letp be a fixed point of7. Let F'(z) = f; f&deforall z € G
only depend orr and not on the integration path. Thaliz) is analytical onG with F’(z) = f(z).

This leads to two equivalent formulations of tin@in theorem of complex integratiolet the functionf be analytical
on an ared-. Let K and K’ be two curves with the same starting - and end points, which can be transformed into
each other by continous deformation witltih Let B be a Jordan curve. Than holds

/f(Z)dZ = /f(z)dz EN ]{f(z)dz =0
K K A

By applying the main theorem as¥ /> one can derive that

6.2.2 Residue

A pointa € C is aregular pointof a functionf(z) if f is analytical ina. Otherwiseu is asingular pointor pole of
f(2). Theresidueof f in a is defined by

Res £(2) = 5. § F(2)ds
K

where K is a Jordan curve which enclosesn positive direction. The residue is 0 in regular points, in singular
points it can be both 0 and 0. Cauchy’s residue proposition is: |étbe analytical within and on a Jordan cute
except in a finite number of singular pointswithin K. Than, if K is taken in a positive direction, holds:

1 n

o f F:)a =3 Res 1(2)
K k=1

Lemma: let the functionf be analytical iz, than holds:

Res M

z=a z — @

= f(a)

This leads to Cauchy’s integral theorem: Afis analytical on the Jordan curv€, which is taken in a positive
direction, holds:

1 f(z) Qs — f(a) if a inside K
omi | z—a®* T\ 0if a outside K
K

Theorem: let K be a curve [ need not be closed) and k<) be continuous ok’. Than the function
_ [ 9(§)dg
K

is analytical withn-th derivative

TR (311
f ( ) '][ (€_Z)n+1

Theorem: let K be a curve and an area. Lep(¢, =) be defined fo€ € K, =z € G, with the following properties:
1. ¢(&, 2) is limited, this meangp(&, 2)| < M for§ € K, z € G,

2. Forfixed¢ € K, ¢(&, z) is an analytical function of on G,
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3. Forfixedz € G the functionss(€, z) andd¢ (€, z) /0= are continuous functions gfon K.

Than the function

f(z2) = [ (& 2)dg
/

is analytical with derivative
99(&, 2)
/ —
re = [ 2
K

Cauchy’'s inequality: let f(z) be an analytical function within and on the ciréle: |z —a| = Randlet|f(z)| < M

for z € C. Than holds
< Mn!

- Rn

1 (@)

6.3 Analytical functions definied by series

The series _ f,(z) is calledpointwise convergern an area with sumF(z) if

_ N -
v<€>()Vz€G3N06ﬂ~"1’,v'r1>no f(Z) - Z fn(z> <e
L n=1 i

The series is calledniform convergerit
_ N -
v8>OE|N0€Rv7L>TLOEZEG f(Z) - Z fn(Z) <eg
L n=1 J

Uniform convergence implies pointwise convergence, the opposite is not necessary.

Theorem: let the power serie$ a,,2™ have a radius of convergen&e R is the distance to the first non-essential
n=0

singularity.

o If lim 3/|a,| = L exists, thanR = 1/L.

o If lim |apy1|/|an| = L exists, thanR = 1/L.

If these limits both don’t exist one can filwith the formula of Cauchy-Hadamard:

1
= lim sup V/|an]

6.4 Laurent series

Taylor’'s theorem: let f be analytical in an are@ and let pointz € G has distance to the boundary ofz. Than
f(2) can be expanded into the Taylor series near

) =3 cale—a) with o, — L)

n=0

valid for |z — a| < r. The radius of convergence of the Taylor seriez is. If f has a pole of ordek in a than
Cly.eeeyCh—1 = 0, Ck 75 0.

Theorem of Laurent: let f be analytical in the circular aréa: » < |z — a| < R. Thanf(z) can be expanded into
a Laurent series with center

f(z)= Z en(z —a)™ with cn:% # , NEZ
K

n=—oo
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valid forr < |z — a| < R andK an arbitrary Jordan curve i@ which encloses point in positive direction.

Theprincipal partof a Laurent series isd | ¢_,,(z — a)~™. One can classify singular points with this. There are 3
n=1

cases:

1. There is no principal part. Thanis a non-essential singularity. Defifféa) = ¢( and the series is also valid
for |z — a| < Randf is analytical ina.

2. The principal part contains a finite number of terms. Than there exists &V so that
lim (2 — a)* f(2) = c_ # 0. Than the functio(z) = (z — a)* f(z) has a non-essential singularitydn
One speaks of a pole of ordetn z = a.

3. The principal part contains an infinite number of terms. Tleis,an essential singular point ¢f such as
exp(1/z) for z = 0.

If f andg are analyticalf(a) # 0, g(a) =0, ¢’(a) # 0thanf(z)/g(z) has a simple pole (i.e. a pole of order 1) in
z = a with
f(z) _ [fla)

=ag(z)  ¢(a)

6.5 Jordan’s theorem

Residues are often used when solving definite integrals. We define the noGifioas(z||z| = p, 3(z) > 0} and
Cy = {212l = p,S(2) < 0} andM*(p, ) = max [f(2)], M~(p, f) = max |f(2)|. We assume thaf(z) is
zeCy 2€C,

analytical for3(z) > 0 with a possible exception of a finite number of singular points which do not lie on the real
axis, lim pM™(p, f) = 0 and that the integral exists, than
p—00

oo

/ fl@)dx = QWiZResf(z) in S(z)>0

— 00

ReplaceM ™ by M~ in the conditions above and it follows that:

oo

/ f(z)dx = —27riZResf(z) in $(z) <0

— 00

Jordan’s lemmalet f be continuous fofz| > R, S(z) > 0 and lim M ™ (p, f) = 0. Than holds forx > 0

p— 00

lim [ f(2)e'**dz =0

p— 00

+
Cs

Let f be continuous fofz| > R, S(z) < 0and lim M~ (p, f) = 0. Than holds forx < 0
p—00

lim [ f(2)e'**dz =0

p—00
Cp

Let z = a be a simple pole of (z) and letC; be the half circldz — a| = 4,0 < arg(z — a) < 7, taken froma + §
toa — 4. Thanis )
im — -1
lim o [ (2)ds = Res (2
Cs




Chapter 7

Tensor calculus

7.1 \ectors and covectors

A finite dimensional vector space is denotedibyV. The vector space of linear transformations frono W is
denoted by (V, W). ConsiderL(V,IR) := V*. We name)* thedual spaceof V. Now we can defineectorsin V

with basis¢ andcovectordan V* with basisc. Properties of both are:

1. Vectors:Z = z*¢; with basis vectors;:

Transformation from systerito ¢’ is given by:

v

. = p
C,‘/:A;/Ci:aiev , x° :A;l‘t

~ i . i
2. Covectors¥ = z;¢ with basis vectors

Here theEinstein conventiois used:

From this follows thatd’, - A¥ = §F and A, = (A7)~
In differential notation the coordinate transformations are given by:

o0zt 0 ozt 0

v — - v n = 7
dv oz dr’ and oz  Ox¥ Ozt
The general transformation rule for a tengois:

oz

¢ " .
outr oul~ Qg™ ox™™
ot

e .. P1---Pn
axpl axpn ausl ausm T1-Tm

. Sm

qi---9n _—
—

For anabsolute tensof = 0.

43
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7.2 Tensor algebra
The following holds:
aij(x; + yi) = aijx; + aijyi, buts a;;(z; +y;) # aijz; + aiy;
and
(aij + aji)zizy = 2a552x5, but: (ai; + aji)xy; # 202y
en(a;; — aj;)xix; = 0.

The sum and difference of two tensors is a tensor of the same rnk: BY. Theouter tensor productesults in
a tensor with a rank equal to the sum of the ranks of both tengdrs: B{* = C¥™. Thecontractionequals two

indices and sums over them. Suppose we takes for a tensorA7:P", this results in) | A7)P" = B;"?. Theinner

productof two tensors is defined by taking the outer product followed by a contra::tion.

7.3 Inner product

Definition: the bilinear transformatioB : V x V* — IR, B(%,ij) = #(%) is denoted by #, i/ >. For thispairing
operator< -,- >= ¢ holds:

J(@) =< T,y >=y' , <&, >=0!
LetG : V — V* be alinear bijection. Define the bilinear forms

g:VxV—->1IR 9(Z,
h:V*xV* = IR h(Z,

Both are not degenerated. The following hold$GZ, Gy) =< Z, Gy >= ¢(Z, 7). If we identify V andV* with
@G, thang (or h) gives an inner product on.

The inner product, ) on A*(V) is defined by:

1
(q)v \II)A - y(q)a \I/)TkU(V)

The inner product of two vectors is than given by:
(Z,7) = 2'y' < &,G¢; >= g;ja‘a?

The matrixg;; of G is given by

gij¢" = G¢;
The matrixg®”’ of G~! is given by:
ok
gklé*l — G_lg

For thismetric tensory;; holds: g;;g?% = §%. This tensor can raise or lower indices:

= gt i g
Tj =gy , T =g’

i

anddu’ =¢ = ¢%¢;.
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7.4 Tensor product

Definition: let ¢/ andV be two finite dimensional vector spaces with dimensionandn. Leti* x V* be the
cartesian product @f andV. A functiont : U* x V* — IR; (u; V) — t(u; ') = t*Pu,ug € IR is called a tensor
if ¢ is linear ini and. The tensors form a vector space denoted by® V. The element§’ € V ® V are called
contravariant 2-tensor§! = T%¢; ® ¢; = T%0; ® 0;. The element§’ € V* ® V* are called covariant 2-tensors:
T =Ty;é ®& = Tyde' © dzi. The elementd” € V* @ V are called mixed 2 tensor§? = T7¢' @ &; =
T;?da* @ 9;, and analogous fdF € V @ V*.

The numbers given by

pof — 43, 5"

with 1 < a <m andl < g < n are the components of

)

TakeZ € U andy € V. Than the functiorr ® ¥/, definied by

(Z® §)(4,0) =< T,14 >u< ,7 >v

is a tensor. The components are derived fré@® 7);; = u;v7. The tensor product of 2 tensors is given by:
2 . IR ik ik
0 form: (V@ W) (P, q) = v'piwq = T pigx
0 . . ik ik
5 form: (P q)(V, W) = piv'grw” = Tipv'w

1 o n ; ;
(1) form: (¥ @ p)(q,0) = v'qiprw® = Tigiw"

7.5 Symmetric and antisymmetric tensors

Atensort € V ® Vis called symmetric resp. antisymmetrio/if, 7 € V* holds:¢(Z, 7) = t(j, %) resp.t(Z, i) =
7t(ga f)

A tensort € V* ® V* is called symmetric resp. antisymmetricvf, 7 € V holds: ¢(Z,7) = t(¢,Z) resp.
t(Z,y) = —t(y,Z). The linear transformatior$ and.A in V ® W are defined by:

St(@,y) = F(HE§) +t(FT))

Analogous inV* ® V*. If t is symmetric resp. antisymmetric, th&n = ¢t resp. At = t¢.

The tensorg; V €; = €;€; = 25(€; ® €;), with1 <i < j < nare abasis i§(V @ V) with dimension%n(n +1).
The tensors; A €; = 2A(¢; ® €;), with 1 < i < j < n are a basis it4(V ® V) with dimension}n(n — 1).

The complete antisymmetric tensois given by:e;xerim = 0i10jm — dimbji.

The permutation-operatoeg,, are defined bye a3 = e231 = e312 = 1, ea13 = e132 = ez21 = —1, for all other
combinations,,,, = 0. There is a connection with thetensor:e, g = g~1/%e,,, andePd™ = g/2¢ra,

7.6 Outer product

Leta € A*(V) andj € AY(V). Thana A 8 € A*+(V) is defined by:

(k+1)!
!

If aandp € AL(V) = V* holds:a AB=a® - 3®a

alAfp=

Ala® )
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-,

The outer product can be written &g x b); = e;;5a7b%, @ x b= G~ - +(Ga A Gb).

Taked, b, ¢, d € IR*. Than(dt A dz)(@,
of the parallelogram spanned Byandb.
Further

X b
5) = agby — bgay is the oriented surface of the projection on theplane

ap by co
az bz ¢
as by cy

(dt A dy A dz)(@,b,7) = det

is the oriented 3-dimensional volume of the projection onttheplane of the parallelepiped spanneddy andc.

(dt A dx A dy A dz)(@, b, d) = det(a, b, ¢, d) is the 4-dimensional volume of the hyperparellelepiped spanned by
a, b, Zandd.

7.7 The Hodge star operator

A¥(V) andA™~*(V) have the same dimension beca(f$p= (,,",) for 1 < k < n. Dim(A™(V)) = 1. The choice

n

of a basis means the choice of an oriented measure of volume, a vplumé&’. We can gauge so that for an
A1l A2 AL
orthonormal basig; holds: u(e;) = 1. This basis is than by definition positive oriented if= & Aé AAE T =1.

Because both spaces have the same dimension one can ask if there exists a bijection betweeyi tre=nmolextra
structure this is not the case. However, such an operation does exist if there is an inner product défiand thre
corresponding volumg. This is called théHodge star operatoand denoted by. The following holds:

vweAk(V)El*weAk—n(v)veeAk(v) 0N xw = (9, U}),\u

For an orthonormal basis ifkR? holds: the volumey = dx A dy A dz, *dz Ady A dz = 1, xdx = dy A dz,
xdz = dx N dy, *dy = —dx AN dz, *(dx A dy) = dz, *(dy A dz) = dz, *(dx AN dz) = —dy.

For a Minkowski basis infR* holds: iy = dt Adr Ady Adz, G = dt @ dt — dx ® de — dy ® dy — dz ® dz, and
xdt ANdx ANdy ANdz =1andxl = dt A dxz A dy A dz. Furthersdt = dx A dy A dz andxdz = dt A dy A dz.

7.8 Differential operations

7.8.1 The directional derivative
Thedirectional derivativan pointd is given by:

af
ozt

Laf =< a,df >=d’

7.8.2 The Lie-derivative

ThelLie-derivativeis given by: ‘ o . ‘
(LzwW)! = w0’ — v* O

7.8.3 Christoffel symbols

To each curvelinear coordinate systefnwe add a system of® functionsl, of 4, defined by

25 L or
ouiouk " IF gyt

These ar&hristoffel symbols of the second kirhristoffel symbols are no tensors. The Christoffel symbols of the

second kind are given by:
i ;] 0 ;
{jk} =L = <Md >
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with F;'.k = F};j- Their transformation to a different coordinate system is given by:

i = ALAL ARTY + A7 (0, A})
The first term in this expression is 0 if the primed coordinates are cartesian.

There is a relation between Christoffel symbols and the metric:
I = 39" (059K + Okgrj — Orgjn)

andl'§,, = 95(In(y/[g])).

Lowering an index gives th€hristoffel symbols of the first kind]‘;ﬁk = g'T'jk.

7.8.4 The covariant derivative

Thecovariant derivativeV ; of a vector, covector and of rank-2 tensors is given by:

Vja' = 8;a' +T}.a"

Vja; = 0ja; — Ffjak

Vyag = 0yaj — I zac + 17 aj
Voyaapg = 0Oyaap —1I7 0:5 — 1753000
Vyaaﬁ = 5‘7a0"8 + Fi?aaeﬁ + ngao‘e

Ricci’s theorem:
Vygas = Vﬁ“ﬁ =0

7.9 Differential operators

The Gradient
is given by:
_ ,O0f 0
_ 1 _ ki v
grad(f) = G™df = g™ 55 57
The divergence
is given by:
1
div(a?) = Via' = —0, (/g a*
(a") 7 k(Vga®)
The curl
is given by:

rot(a) =G ' x-d-Gd = —eP"V a, = Vya, — Vpa,

The Laplacian

is given by:

0 i 0
A(f) =divgrad(f) = «dxdf = VgV 0;f =g"V;V;f = — == (\/gg”—f.)
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7.10 Differential geometry

7.10.1 Space curves

We limit ourselves tdR? with a fixed orthonormal basis. A point is represented by the vetter(z!, 22, 2°). A
space curve is a collection of points represented by Z(¢). The arc length of a space curve is given by:

o @@ @)

The derivative ofs with respect ta is the length of the vectatz/dt:

ds\* _ (d& di
dt) — \dt’ dt
The osculation planén a point P of a space curve is the limiting position of the plane through the tangent of the

plane in pointP and a point) when(@ approache$’ along the space curve. The osculation plane is parallel with
Z(s). If £ # 0 the osculation plane is given by:

J=T+ N+ pi so det(j— &, &%) =0
In a bending point holds, i;f‘# 0:
=T+ +pui
Thetangenthas unit vectof = #, themain normalunit vectorii = & and thebinormalb = # x Z. So the main
normal lies in the osculation plane, the binormal is perpendicular to it.

Let P be a point andy be a nearby point of a space cur¥s). Let Ay be the angle between the tangentg’in
and@ and letAq be the angle between the osculation planes (binormaR)and(@. Then thecurvaturep and the
torsionr in P are defined by:

2 2 2
= d_(p = lim % 2= %
ds As—0 \ As ’ ds

andp > 0. For plane curvep is the ordinary curvature and= 0. The following holds:

— 2

P2 = (00 = (37) and 72 = (b,b)

Frenet’s equations express the derivatives as linear combinations of these vectors:
Z:pﬁ , ﬁz—p[-i—rg , g:—rﬁ

From this follows thatlet(Z, 7, 7 ) = p7.

Some curves and their properties are:

Screw line 7/p =constant

Circle screw line T =constantp =constant
Plane curves 7=0

Circles p =constanty =0

Lines p=717=0

7.10.2 Surfaces inRk?

A surface inIR? is the collection of end points of the vectars= #(u,v), soz" = z"(u®). On the surface are 2
families of curves, one with =constant and one with =constant.

The tangent plane in a poift at the surface has basis:

ch =017 and & = 0%
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7.10.3 The first fundamental tensor

Let P be a point of the surfacé = #(u®). The following two curves through®, denoted byu® = u*(¢),
u® = v*(7), have as tangent vectorsin

dz  du® _ g dv® _
P TICER
Thefirst fundamental tensaf the surface inP is the inner product of these tangent vectors:

= (Ca, C3

d¥ d¥r @ )dua dvP
dt’ dr dt dr

The covariant components w.r.t. the basis= 9,7 are:
Yap = (Em 5,3)
For the angle) between the parameter curvesiinu = t,v =constant and, =constanty = 7 holds:

gi2

cos(¢) = —m

For the arc length of P along the curve.®(t) holds:
ds? = gapdu®du”

This expression is called thi@e element

7.10.4 The second fundamental tensor
The 4 derivatives of the tangent vectdlsozZ = 0,3 are each linear independent of the vect@rsc, and N,
with N perpendicular t@; andc,. This is written as:

0aCs =T3¢ + hapN

This leads to: )
[0 =(7,0a5) , hap=(N,0aés) = ——— det(¢1,, 0alp)

V/det |g]|
7.10.5 Geodetic curvature
A curve on the surfacg(u®) is given by:u® = u®(s), thanz = Z(u*(s)) with s the arc length of the curve. The
length ofZ is the curvature of the curve inP. The projection off on the surface is a vector with components
pr =i + T g0
of which the length is called thgeodetic curvaturef the curve inp. This remains the same if the surface is curved
and the line element remains the same. The projectiahoof N has length

p = hapt®a®

and is called the@ormal curvatureof the curve inP. Thetheorem of Meusniestates that different curves on the
surface with the same tangent vectoiirhave the same normal curvature.

A geodetic lineof a surface is a curve on the surface for which in each point the main normal of the curve is the
same as the normal on the surface. So for a geodetic line is in eactppeind, so

d2u” , du® du? _

ds? T rasTgs ds
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The covariant derivativ®’ /dt in P of a vector field of a surface along a curve is the projection on the tangent plane
in P of the normal derivative irP.

For two vector fields/(t) andw(t) along the same curve of the surface follows Leibniz’ rule:
dw.m) (VY (VO
d  \ dt Tt

\Y% . dv” du® .,
@ (V%) = ( ra ”%W“ﬁ) “

7.11 Riemannian geometry

Along a curve holds:

TheRiemann tensoR is defined by:

RM

bosT" = Vo VT — VVaTh

Thisis a(é) tensor withn?(n? — 1)/12 independent components not identically equal to 0. This tensor is a measure
for the curvature of the considered space. If it is 0, the space is a flat manifold. It has the following symmetry
properties:
Raﬁ;u/ = R;waﬁ = _Rﬁa;w = _Raﬁuu
The following relation holds:
Va, Ve]TH = R

oaf

T) + Ry, 5Ty
The Riemann tensor depends on the Christoffel symbols through
Rg;w = aﬂrgu - al’rgu + Fgu gv - ngrg#
In a space and coordinate system where the Christoffel symbols are 0 this becomes:
R§,., = 59°° (0804900 — 9500 gop + 05009y — 0s0ugpr)
TheBianchi identitiesare: Vi Ragu + Vo Ragap + ViuRagur = 0.

The Ricci tensoris obtained by contracting the Riemann tensBs = RZW, and is symmetric in its indices:

R.p = Rga. TheEinstein tensof7 is defined by:G*? = R*# — 145 _ It has the property thaf sG*? = 0. The
Ricci-scalar isR = g*’ R3.




Chapter 8

Numerical mathematics

8.1 Errors

There will be an error in the solution if a problem has a number of parameters which are not exactly known. The
dependency between errors in input data and errors in the solution can be expressedimdifen number. If
the problem is given by = ¢(a) the first-order approximation for an erréxt in a is:

dx  a¢'(a) da

r  éla) a

The numbet(a) = |a¢’(a)|/|¢(a)|. ¢ < 1 if the problem is well-conditioned.

8.2 Floating point representations

The floating point representation depends on 4 natural numbers:
1. The basis of the number systegin
2. The length of the mantissa
3. The length of the exponent

4. The signs.

Than the representation of machine numbers becoh@(sc) = s-m - (3°|where mantissan is a number witht

B-based numbers and for which hold&3 < |m| < 1, ande is a number withy 5-based numbers for which holds
le] < 87— 1. The number 0 is added to this set, for example with- e = 0. The largest machine number is

Amax = (1 - ﬂit)BﬁQ71

and the smallest positive machine number is
Gmin = Biﬁq

The distance between two successive machine numbers in the inftgtval 7] is g2 . If = is a real number and
the closest machine numberi$(x), than holds:

rd(z) =z(l+¢) with [¢| < 17
z=rd(@)(1+¢) with [¢|<Lig

The number, := %Bl—t is called the machine-accuracy, and

x — rd(z)

/

g, <n <n

An often used 32 bits float format is: 1 bit fey 8 for the exponent an2B for de mantissa. The base here is 2.

51
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8.3 Systems of equations

We want to solve the matrix equatiof = b for a non-singulard, which is equivalent to finding the inverse matrix
A~1L. Inverting an x n matrix via Cramer’s rule requires too much multiplicatigifs) with n! < f(n) < (e—1)n!,
so other methods are preferable.

8.3.1 Triangular matrices

Consider the equatiobtiz = ¢ whereU is a right-upper triangular, this is a matrix in whi€h; = 0 for all j < ¢,
and allU;; # 0. Than:

Tn = Cn/Unn

Tpn—-1 = (Cnfl - Unfl,nxn>/Un71,n71

Z1

(1 =Y Uiyy)/Uni

j=2
In code:

for (k = n; k > 0; k--)

{
S = c[k];
for = k + 1; j < n; j++)
{
} S -= UIK]l * x[
X[kl = S / UIK][K];
}

This algorithm require%n(n + 1) floating point calculations.

8.3.2 Gauss elimination

Consider a general setZ = b. This can be reduced by Gauss elimination to a triangular form by multiplying the

first equation with4;; /A;; and than subtract it from all others; now the first column contains all 0's extgpt

Than the 2nd equation is subtracted in such a way from the others that all elements on the second row are 0 except
Agg, €tc. In code:

for (k = 1; k <= n; k++)

{
for ( = ki j <= n; j++) ULKI] = ALK][L;
c[k] = b[K];

for (i = k + 1; i <= n; i++)
{
L = Afi][k] / UK][K];
for = k + 1; j <= n; j++)
{
Afil[[] -= L * UIK][;

bli] -= L * c[k;
}
}
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This algorithm require%n(n2 — 1) floating point multiplications and divisions for operations on the coefficient
matrix andfn(n — 1) multiplications for operations on the right-hand terms, whereafter the triangular set has to be
solved with1n(n + 1) operations.

8.3.3 Pivot strategy

Some equations have to be interchanged if the corner elernentsl%), ... are not alk£ 0 to allow Gauss elimina-
tion to work. In the following,A™ is the element after theth iteration. One method is: m;’;‘” = 0, than search

for an elemenﬂgz_” with p > k that is# 0 and interchange theth and thenth equation. This strategy fails only
if the set is singular and has no solution at all.

8.4 Roots of functions

8.4.1 Successive substitution
We want to solve the equatidi(xz) = 0, so we want to find the roet with F'(«) = 0.

Many solutions are essentially the following:

1. Rewrite the equation in the form= f(z) so that a solution of this equation is also a solutioF¢f) = 0.
Further,f () may not vary too much with respecttomeara.

2. Assume an initial estimatior, for « and obtain the series, with z,, = f(x,,_1), in the hope thatlim z,, =

n— 00
(e

Example: choose

h(x) F(x)
fle)=F—e——==ax—
(@) s@ "G
than we can expect that the raw with
rg = B
Tn = Tp—-1— Eh(mn_l)
g(xn71>

converges tav.

8.4.2 Local convergence

Let « be a solution oft = f(z) and letx,, = f(z,—1) for a givenz,. Let f'(x) be continuous in a neighbourhood
of a.. Let f'(a) = A with |A| < 1. Than there exists & > 0 so that for eaclry with |2y — «| < § holds:

1. lim n, =q,
n—oo

2. If for a particulark holds: x;, = «, than for eactn > k holds thatz,, = a. If x,, # « for all n than holds

— n— Tn_ - A
im — I A g STl g gy 2T
n—00 O — Tp_1 n—00 Tp_1 — Tp_2 n—oo Ty — Tp—1 1—A
The quantityA is called theasymptotic convergence factdhe quantityB = —!°log|A| is called theasymptotic

convergence speed
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8.4.3 Aitken extrapolation

We define
A= lim Zn—%Tn-t
n—=00 Tp 1 — Tp—-2
A convergestgf/(a). Than the row
Ay,
ap = Ty + 1_—An(xn - xn—l)

will converge toa.

8.4.4 Newton iteration

There are more ways to transforf(z) = 0 into x = f(x). One essential condition for them all is that in a
neighbourhood of a roet holds that f'(x)| < 1, and the smallef’(x), the faster the series converges. A general
method to construcf(z) is:

f(x) =2 — ®(2)F(x)
with ®(z) # 0 in a neighbourhood aof. If one chooses:

_ 1
T F)

O(z)

Than this becomes Newtons method. The iteration formula than becomes:

F(l‘n,1>
F/(xn—l)

Ty = Tp—1 —
Some remarks:
e This same result can also be derived with Taylor series.
e Local convergence is often difficult to determine.
o If x, is far apart from the convergence can sometimes be very slow.
e The assumptiod” (o) # 0 means thatv is a simple root.
For F(x) = 2* — a the series becomes:
Ty = % <(kz —Dxzp1 + #)
n—1
This is a well-known way to compute roots.

The following code finds the root of a function by means of Newton’s method. The root lies within the interval
[x1, x2] . The value is adapted until the accuracy is better thaps. The functionfuncd is a routine that
returns both the function and its first derivative in poirih the passed pointers.

float SolveNewton(void (*funcd)(float, float*, float*), float x1, float x2, float eps)

{
int  j, max_iter = 25;
float df, dx, f, root;

root = 0.5 * (x1 + x2);
for (j = 1; ] <= max_iter; j++)

(*funcd)(root, &f, &df);
dx = f/df;
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root = -dx;
if ( (x1 - root)*(root - x2) < 0.0 )
{
perror("Jumped out of brackets in SolveNewton.");
exit(1);
}
if ( fabs(dx) < eps ) return root; /* Convergence */
}
perror("Maximum number of iterations exceeded in SolveNewton.");
exit(1);
return 0.0;

}

8.4.5 The secant method

This is, in contrast to the two methods discussed previously, a two-step method. If two approximationls:,, |
exist for a root, than one can find the next approximation with

Tp — Tp—1

F(mn) - F(mn—l)

Tnt1 = Tn — Fay)

If F(z,)andF(x,—1) have a different sign one is interpolating, otherwise extrapolating.

8.5 Polynomial interpolation

A base for polynomials of order is given byLagrange’s interpolation polynomials

n T -z

Li(w) =[] —
1=0 “J l
l#£j

The following holds:
1. EachL,(x) has orden,
2. LJ(xZ) = 6” fori,j =0,1,...,n,

3. Each polynomigh(z) can be written uniquely as
plz) = ¢;Li(x) with ¢; = p(z;)
j=0

This is not a suitable method to calculate the value of a ploynomial in a givenpeint. To do this, the Horner
algorithm is more usable: the value= ), c2® in 2 = a can be calculated as follows:

float GetPolyValue(float c[], int n)
{

int i; float s = c[n];

for i=n-1;i >= 0; i-)

{

s =s *a+ cli
}
return s;

}
After it is finisheds has valuey(a).
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8.6 Definite integrals
Almost all numerical methods are based on a formula of the type:

n

/f )iz =3 cif (z:) + R(f)

=0

with n, ¢; andz; independent off (z) and R(f) the error which has the for(f) = Cf(@ (&) for all common
methods. Herg € (a,b) andg > n + 1. Often the points:; are chosen equidistant. Some common formulas are:

e Thetrapezoidrulen = 1,20 =a, 21 =b,h =b—a:
b
[ 1@yt =S + s - 270
T QU D)
e Simpson'srulen =2,z =a,z1 = 3(a+b), 22 =b,h = 3(b—a):
/ fa Fao) + (1) + Flaa)] — oo 79 (g)
e The midpointrulen =0,z = 3(a +b), h = b — a:
/ F@)da = b (o) + =€)

The interval will usually be split up and the integration formulas be applied to the partial interyalaifes much
within the interval.

A Gaussian integration formula is obtained when one wants to get both the coeffigiamtd the points:; in an
integral formula so that the integral formula gives exact results for polynomials of an order as high as possible. Two
examples are:

1. Gaussian formula with 2 points:

2. Gaussian formula with 3 points:

h

[ e = [sr (=ny/2) + 870+ 57 (1/3)] + 1900

—h

8.7 Derivatives

There are several formulas for the numerical calculatioff ¢f):

e Forward differentiation:

f'(x) — f(m'i_hf)b_ f(ﬂ?) _ %hf”(f)
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o Backward differentiation:

e Central differentiation: £ B - f( " 2
, . xr + — flx — 7

e The approximation is better if more function values are used:

—f(x+2h) +8f(x+h) —8f(x —h) + f(x — 2h) Jrh_4
12h 30

fx) = (3

There are also formulas for higher derivatives:

—f(x+2h) +16f(x + h) — 30f(x) + 16f(x — h) — f(z —2h) = h?
12h2 "9

() = (3

8.8 Differential equations

We start with the first order D' (z ) f(z,y) for z > z( and initial conditiony(z¢) = xo. Suppose we find
approximations:y, za, ..., 2z, for y(z1), y(z2),..., y(x,). Than we can derive some formulas to obtajn, as
approximation fow (z,1):

e Euler (single step, explicit):
2

h—y”(f )

Zn+1 = Zn + hf(m'ru Zn) + 2

e Midpoint rule (two steps, explicit):
3

Byme)

Zntl = Zn—1+ th(m'm Zn) + 3

e Trapezoid rule (single step, implicit):

B3
Zp4+l = Zn + %h(f(a:n, 20) + (&g, Zng1)) — =4 (€)

12
Runge-Kutta methods are an important class of single-step methods. They work so well because they&ejution
can be written as:

Yn+1 = Yn + hf(€7u y(gn)) Wlth €n S (mn; l"n-i—l)
Because,, is unknown some “measurements” are done on the increment furictiem f (z, y) in well chosen

points near the solution. Than one takes 4py; — z,, a weighted average of the measured values. One of the
possible 3rd order Runge-Kutta methods is given by:

ki = hf(zn,zn)
ka = hf(z,+ h Zn + kl)
ks = hf(z,+ jh, Zn + jkg)
Zntl = 2Znt é@lﬁ + 3ko + 4ks3)
and the classical 4th order method is:
ki = hf(zn,zn)
ky = hf(zn+3 h Zn + kl)
ks = hf(zn+ s h Zn + kg)
ki = hf(zn+ h,zn + ks)
Zng1 = Zn+ (k14 2ks + 2ks + k)

Often the accuracy is increased by adjusting the stepsize for each step with the estimated error. Step doubling is
most often used for 4th order Runge-Kutta.
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8.9 The fast Fourier transform

The Fourier transform of a function can be approximated when some discrete points are known. Suppose we have
N successive samplés, = h(t;) with t, = kA, k = 0,1,2,..., N — 1. Than the discrete Fourier transform is
given by:
N—
Hn — hke%rikn/N
k=0

[

and the inverse Fourier transform by
N-—-1

Z Hnef27rikn/N

n=0

1

b=+

This operation is ordeN2. It can be faster, orde¥ -2 log(V), with the fast Fourier transform. The basic idea is
that a Fourier transform of lengthi can be rewritten as the sum of two discrete Fourier transforms, each of length
N/2. One is formed from the even-numbered points of the orighathe other from the odd-numbered points.

This can be implemented as follows. The ardaya[1..2*nn] contains on the odd positions the real and on the
even positions the imaginary parts of the input dd&ta[1] is the real part andata[2] the imaginary part of
fo, etc. The next routine replaces the valuedata by their discrete Fourier transformed valuessign = 1,

and by their inverse transformed valuegsifin —1. nn must be a power of 2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

void FourierTransform(float data[], unsigned long nn, int isign)
{
unsigned long n, mmax, m, j, istep, i;
double wtemp, wr, wpr, wpi, wi, theta;
float tempr, tempi;
n =nn << 1;
= ]_,
or (i =1, i<ni+=2)

~——h —

it (j>i)

SWAP(data][j], datali]);
SWAP(data[j+1], data[i+1]);

:n>>l;
hile (m >= 2 & j > m)

jo-=m;
m >>= 1;

j = m;
}
mmax = 2;
while ( n > mmax ) /* Outermost loop, is executed log2(nn) times */
{
istep
theta

mmax << 1,

isign * (6.28318530717959/mmax);
= sin(0.5 * theta);

wpr = -2.0 * wtemp * wtemp;

= sin(theta);
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wr = 1.0;
wi = 0.0;
for (m = 1; m < mmax; m += 2)
{
for i = m; i <= n; i += istep) /* Danielson-Lanczos equation */
{
] = i + mmax;
tempr = wr * data]j] - wi * dataf[j+1];
tempi = wr * data[j+1] + wi * data]j];
datalj] = data[i] - tempr;

data[j+1] = datafi+1] - tempi;
datali] += tempr;
data[i+1] += tempi;

}
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;

}

mmax=istep;

}
}




