```Vai su: http://www.WolframAlpha.com e cerca:
rotation
rotation matrix
homothetic
gauss plane
complex plane
i
imaginary number
complex number
complex conjugate
(a+i*b)*(c+i*d)
1/(a+i*b)
cos(a+b)
cos(2*a)
sin(a+b)
sin(2*a)
tan(a+b)
tan(2*a)
ρ = θ^2
polar plot t^2, t = 0..100
remainder theorem
fundamental theorem of algebra
solve z^5=1 for z
MathWorld subject complex numbers
conformal mapping
Cayley transform
vedi anche:
http://mathworld.wolfram.com/ConformalMapping.html
solve 7*x^4 + sqrt(3)*x^3- x^2 + 2*x + 2/3 = 0 for x real
solve 7*x^4 + sqrt(3)*x^3- x^2 + 2*x + 2/3 = 0 for x
(4+6i)+(2+3i)
(7+10i)*(4+3i)
z=(4+3i); Re(z); Im(z); |z|; arg(z)
arg(4+3i)/pi*180
simplify 1/(x+iy)
solve z*(7+i5) = 1
(-2+61 i)/(4+3 i)
(a+b i)/(x+y i)
arg(0-2i)/pi*180
i / (2 + sqrt(2) i)
plot |x+i y-3-1| = 2, 1 < x < 7
solve x-1+sqrt(4*x)/sqrt(x)=0 for x
solve x-1+sqrt(4*x)/sqrt(x)=0 for x, x > 0
solve x-1+sqrt(4*x)/sqrt(x)=0 for x
plot Piecewise[ { {x-1+sqrt(4*x)/sqrt(x), x>=0}, {1e5, x<0} } ], x in [-2,2], y in [-1,4]
(x+y i)^2 + (x+y i)
(see  "complex map")
3/(x + y i + 1) + x + y i - 4 i
(see  "complex map")
solve z^2-i=0 for z
simplify (x+ iy)*(4+3 i)
{(0+0i),(1+0 i),(1+1i),(0+1 i)}*(4+3 i)
polygon (0,0),(1,0),(1,1),(0,1); polygon (0,0),(4,3),(1,7),(-3,4)

ALTRO

```