```# le coordinate dei due pesci, mettendo di fila le coppie x,y
pesce1 <- c(
0.0,-0.40,
0.0,-0.35,
0.2,-0.15,
0.2,0.05,
0.0,0.20,
0.0,0.30,
1.0,0.95,
2.5,1.50,
4.0,1.80,
5.0,1.90,
6.0,1.75,
7.0,1.40,
8.0,1.05,
8.8,0.70,
9.4,1.00,
9.5,1.30,
9.4,1.90,
9.0,2.00,
8.0,1.05,
8.8,0.70,
10.0,0.05,
10.0,-0.25,
11.2,-0.70,
11.3,-0.30,
11.3,0.00,
11.2,0.40,
10.0,0.05,
10.0,-0.25,
9.0,-0.60,
8.0,-1.00,
8.5,-2.00,
9.0,-2.15,
9.6,-2.00,
9.8,-1.50,
9.0,-0.60,
8.0,-1.00,
6.6,-1.70,
5.0,-2.20,
4.0,-2.25,
3.0,-2.20,
2.0,-2.00,
1.4,-1.60,
0.6,-0.80,
0.0,-0.40)
pesce2 <- c(
0.0,-0.40,
0.0,-0.35,
0.1,-0.15,
0.1,0.05,
0.0,0.20,
0.0,0.30,
0.5,0.95,
1.25,1.50,
2.0,1.80,
2.5,1.90,
3.0,1.75,
3.5,1.40,
4.0,1.05,
4.4,0.70,
4.7,1.00,
4.75,1.30,
4.7,1.90,
4.5,2.00,
4.0,1.05,
4.4,0.70,
5.0,0.05,
5.0,-0.25,
5.6,-0.70,
5.65,-0.30,
5.64,0.00,
5.6,0.40,
5.0,0.05,
5.0,-0.25,
4.5,-0.60,
4.0,-1.00,
4.25,-2.00,
4.5,-2.15,
4.8,-2.00,
4.9,-1.50,
4.5,-0.60,
4.0,-1.00,
3.3,-1.70,
2.5,-2.20,
2.0,-2.25,
1.5,-2.20,
1.0,-2.00,
0.7,-1.60,
0.3,-0.80,
0.0,-0.40)
# quanti sono i punti
n <- length(pesce1)/2; n
##  da A a B
# trasformo la sequenza in una matrice, a due colonne
T <- matrix(pesce1,nrow=n,ncol=2,byrow=TRUE)
dev.new()
plot(c(0,12),c(-6,6),type="n",xlab="",ylab="",asp=1)
# La griglia
A <- seq(0,12,0.1)
B <- seq(-3,3,0.1)
A1 <- seq(0,12,1)
B1 <- seq(-3,3,1)
for(x in A) for (y in B1)  points(x,y,pch=".")
for(x in A1) for (y in B)  points(x,y,pch=".")
# la poligonale che raffigura il pesce A
lines(T[,1],T[,2],lwd=2)
# l'occhio
cer <- function(x,y,r) {n <- 50; h <- 2*pi/n; i <- (1:n)*h; lines(cos(i)*r+x,sin(i)*r+y,lwd=2)}
cer(1.1,0.5,1/7)
#
dev.new() # in una nuova finestra il pesce B
plot(c(-1,7),c(-4,4),type="n", xlab="",ylab="",asp=1)
A <- seq(0,6,0.1)
B <- seq(-3,3,0.1)
A1 <- seq(0,6,1)
B1 <- seq(-3,3,1)
fx <- function(x,y) x*0.5
fy <- function(x,y) y
for(x in A) for (y in B1) {y1 <- fy(x,y); x1 <- 2*fx(x,y); points(x1,y1,pch=".") }
for(x in A1) for (y in B) {y1 <- fy(x,y); x1 <- 2*fx(x,y); points(x1,y1,pch=".") }
lines(fx(T[,1],T[,2]),fy(T[,1],T[,2]),lwd=2)
cer(fx(1.1,0.5),fy(1.1,0.5),1/7)
#
##  da A a D
dev.new()
plot(c(0,12),c(-6,6),type="n",xlab="",ylab="",asp=1)
A <- seq(0,12,0.1)
B <- seq(-3,3,0.1)
A1 <- seq(0,12,1)
B1 <- seq(-3,3,1)
for(x in A) for (y in B1)  points(x,y,pch=".")
for(x in A1) for (y in B)  points(x,y,pch=".")
lines(T[,1],T[,2],lwd=2)
cer(1.1,0.5,1/7)
#
dev.new()
plot(c(0,14),c(-7,7),type="n", xlab="",ylab="",asp=1)
A <- seq(0,12,0.1)
B <- seq(-3,3,0.1)
A1 <- seq(0,12,1)
B1 <- seq(-3,3,1)
fx <- function(x,y) x-(abs(y)/10)^1.15
fy <- function(x,y) abs((1+x^1.4/10)*y)^1.001*sign(y)
for(x in A) for (y in B1) {y1 <- fy(x,y); x1 <- fx(x,y); points(x1,y1,pch=".") }
for(x in A1) for (y in B) {y1 <- fy(x,y); x1 <- fx(x,y); points(x1,y1,pch=".") }
lines(fx(T[,1],T[,2]),fy(T[,1],T[,2]),lwd=2)
cer(fx(1.1,0.5),fy(1.1,0.5),1/7)
#
n <- length(pesce2)/2; n
##  da B a C
dev.new()
T <- matrix(pesce2,nrow=n,ncol=2,byrow=TRUE)
plot(c(-1,7),c(-4,4),type="n",xlab="",ylab="",asp=1)
A <- seq(0,6,0.1)
B <- seq(-3,3,0.1)
A1 <- seq(0,6,1)
B1 <- seq(-3,3,1)
for(x in A) for (y in B1)  points(x,y,pch=".")
for(x in A1) for (y in B)  points(x,y,pch=".")
lines(T[,1],T[,2],lwd=2)
cer(0.55,0.5,1/7)
#
dev.new()
plot(c(-1,7),c(-4,4),type="n", xlab="",ylab="",asp=1)
fx <- function(x,y) x+y*0.4
fy <- function(x,y) y
for(x in A) for (y in B1) {y1 <- fy(x,y); x1 <- fx(x,y); points(x1,y1,pch=".") }
for(x in A1) for (y in B) {y1 <- fy(x,y); x1 <- fx(x,y); points(x1,y1,pch=".") }
lines(fx(T[,1],T[,2]),fy(T[,1],T[,2]),lwd=2)
cer(fx(0.55,0.5),fy(0.55,0.5),1/7)

```