http://www.WolframAlpha.com: calcolatrice
Numerica / Simbolica [utile, tra l'altro, per semplificare espressioni ottenute con R]; prova a svolgere i "calcoli"
seguenti; molti altri esempi li hai cliccando "Examples", poi "Mathematics" e, quindi, se vuoi, cliccando
"Elementary Mathematics", ..., "Famous Math Problems" (altri esempi significativi li trovi in
"Statistics & Data Analysis",
"Physics",
"Chemistry",
"Money & Finance",
"Computational Sciences",
"Units & Measures" - per copiare i risultati basta cliccare, nella applicazione,
su di essi e copiarli dalla nuova finestra in cui appaiono; poi
se si vuole si torna indietro, alla finestra con in input il
termine originale - ovviamente, puoi aprire WolframAlpha in più finestre; altre considerazioni
ed esempi li puoi trovare in mathworld.wolfram.com;
esempi riferiti ai vari temi matematici / agli OM). Se si sta operando su un computer che non è il proprio, WolframAlpha
è uno strumento comodissimo per fare elaborazioni senza dover installare nulla. SPOT
![]() | Clicca la "A", come illustrato a sinistra, per copiare i testi. Examples / Immagini / Esercizi. |
1/6+5/9 0.123... 0.12323... sqrt(1234567890) cuberoot(1234567890) 3.5 days -> hours sort (3,5,6,1,9,4) sort ("maria", "luigi", "dario", "piera", "rosa", "alfonso") pie chart (1, 2, 3) BarChart (2, 7, 4) histogram{156,168,162,150,167,157,170,157,159,164,157,165,163,165,160,163,162,155} statistics{156,168,162,150,167,157,170,157,159,164,157,165,163,165,160,163,162,155} triangle vertices (1,1), (2,4), (3,3) triangle sides 1,4,4 (poi clicca "0.324166 radians", ...) pi pi to 1000 digits (numeri le cui approssimazioni sono:) 4.7082 6.038504 2.598076211353 4.71 through pi and e Is 5^(1/3) a rational number? Is pi^sqrt(2) a rational number? factor 70560 primes between 8700 and 8900 9^9^9 1+2+3+...+10 1+0.5^1+0.5^2+0.5^3+... 1+0.5+0.5^2+0.5^3+... sum 0.5^n, n=0 to 20 sum 0.5^n, n=0 to oo factorial(100) mathworld subject terminology statistics statistics maths descriptive statistics mathworld subject probability mathworld subject limit theorems calculus maths geometry maths geometry (anche cliccando poi su Refferring to Maths Def) geometric transformations (cliccando sia "general topic" che "a class of...") mathworld subject algebraic properties mathworld subject general algebra polynomial polynomials vectors functions definition periodic function derivative definition integral definition area definition curve surface median, mean complex numbers power series matrix (cliccando sia "general topic" che "referring to a...") subject general projective geometry mathworld subject continuous distributions mathworld subject discrete distributions mathworld subject miscellaneous transformations mathworld subject functions mathworld subject game theory mathworld subject matrix types famous mathematical games mathworld subject rounding mathworld subject error analysis mathworld subject proofs mathworld subject general logic mathworld subject notation solved mathematics problems mathematical paradoxes sphere, surface area=1 polygon area (cliccando "referring to a...") rotate 30 degrees reflect across y=2x vertical shear 30 degrees cardioid annulus, inner radius=2, outer radius=5 What is the radius of a cone with volume v and height 2 219 to base 2 11011011 from base 2 to base 10 16.2 to base 2 prime between 2000000 and 2000100 prime closest to 200000000000 basic definition of prime number gcd 2261, 74613 lcm 2261, 74613 1563 to roman historical numerals binomial(7,n) where n = 0,1,2,3,4,5,6,7 binomial(2*n,n)*(1/2^n)*(1/2^n) where n = 1,2,3,4,5,6,7,8,9,10 plot binomial(2*n,n)*(1/2^n)*(1/2^n) where n = 1,2,3,4,5,6,7,8,9,10 solve x^2-x=3.2 x^2-x=3.2 y=x^2 plot y = x^3-x, x=15 plot y^2+x^2-x=1, y=x^2, y^2=x, y=0, x=0 y = Piecewise[ { {x^2, 1>x>=0}, {x, 0>x>-1}, {-1, -1>x } } ] range y = x*x*x - 3*x*x + 1, -5 < x < 10 inverse of F(x) = x^2+x (si ottiene la relazione inversa, non necessariamente una funzione; vedi anche qui) number line x^2>=1, 0<=x<2 sin(x) = sqrt(3)/2, sin(5*x) square(center=(0,0),side=2), segment (0,0) (sin(60*PI/180),cos(60*PI/180)), circle x^2+y^2=1 x+y=1 & x-y=1 solve x^7-x^6-x^5-x+1+sin(x)=0 for x (attenzione: non è detto che si ottengano tutte le soluzioni:) plot y=x^7-x^6-x^5-x+1+sin(x) for -2 <= x <= 2, -3 <= y <= 3 (se specifico l'intervallo posso ottenere [tutte] le soluzioni in esso) solve x^7-x^6-x^5-x+1+sin(x)=0 for x, -10 <= x <= 10 plot y = sqrt(25+4*x-4*x^2)), -3 <= x <= 4 real plot y = sqrt(25+4*x-4*x^2)), -3 <= x <= 4 plot y = sin(x) and y = sin(x/180*PI), 0 <= x <= 2*PI (3*x^4-x^3) / (x^2-x+2) [ottengo 3*x^2 + 2*x - 4 + (8x-8)/(x^2-x+2): 3*x^2+2*x-4 e resto 8x-8] quotient and remainder of (3*x^4-x^3) / (x^2-x+2) ( click [Show details] ) gcd(x^2–8x+15, x^2–10x+21) lcm(x^2–8x+15, x^2–10x+21) line (1,2) (2,1) point point distance point line distance plot x^2+y^2<1 and y>x circle (0,0), (1,0), (0,1) parametric plot (3*sin(t), 2*cos(t)) pentagon a*x^5-2*a*x^3+a*x (x^3+1)/(x+1) sin(x+y) x^3 - 4*x^2 + 6*x - 24 = 0 solve x^2+y^2+z^2-1 = 0 for x solve 7*x^4 + sqrt(3)*x^3- x^2 + 2*x + 2/3 = 0 for x real solve 7*x^4 + sqrt(3)*x^3- x^2 + 2*x + 2/3 = 0 for x factor factor 2x^5 - 19x^4 + 58x^3 - 67x^2 + 56x - 48 stationary points of (x^5+x^9-x-1)^3 inflection points of (x^5+x^9-x-1)^3 asymptotes (2x^3 + 4x^2 - 9)/(3 - x^2) cusps of |x-2|^(1/2)-|x+2|^(1/3) tangent to x*e^-x^2 at x=1/3 tangent to 2*x^2 + 2*y^2 - 8*y + 1 = 0 passing through (2,3) 2x^2 - 3xy + 4y^2 + 6x - 3y - 4 = 0 5, 14, 23, 32, 41, ... f(n+1)=f(n)*2, f(0)=1 recursion sequences sum 1/n^2, n=1 to oo sum x^n, n=0 to +oo NOT(P AND (Q OR P)) (complement S) intersect (A union B) d/dx cos(x)^2*x d/dx cos(x)^2*x at x=pi/4 derivative of x^4*sin(x) d(f(x)*g(x))/dx d/dx piecewise[ { {x^2, x>=0}, {0, x<0} } ] lim (sin(x)-x)/x^3 as x->0 lim (x-sin(x)/2-log(1+x)/2) / ( x*(1-cos(x) ) ) as x->0 limit d^3/dx^3 (x^2+x^3+sin(2*x)) (d^1/dx^1) sin(x), (d^2/dx^2) sin(x), (d^3/dx^3) sin(x), (d^4/dx^4) sin(x) d/dx d/dy x^3*y^4 maximize x(1-x)e^x integrate sin x dx from x=0 to pi integrate sin(cos x) from x=0 to 1 integrate piecewise[ { {x^2, x <= 2}, {x, 2 < x} } ] x = -1..3 plot piecewise[{ {x, x <= 1}, { (x-1)*2 , 1 < x <= 1.5}, { (2-x)*2 , 1.5 < x} }], x = 0..2 integrate piecewise[{ {x, x <= 1}, { (x-1)*2 , 1 < x <= 1.5}, { (2-x)*2 , 1.5 < x} }], x = 0..2 integrate sin integrate x^3+1/x dx (ma è meglio mettere solo x^3+1/x ... per interpretare l'uscita fornita) integrate sin(x)/x dx (l'integrale non è una funzione elementare) int sin(x)/x dx, x=0..infinity area between y=|x| and y=x^2-10 arc length of y=sqrt(1-x^2) from x=-1 to x=1 d/dx (integrate exp(-t^2) from t=2*x to 3*x) taylor series sin(x) at pi {{6, -7, 10}, {0, 3, -1}, {0, 5, -7}} {{6, -7, 10}, {0, 3, -1}, {0, 5, -7}}*{{1},{3},{5}} inv {{6, -7, 10}, {0, 3, -1}, {0, 5, -7}} rank {{6, -11, 13}, {4, -1, 3}, {3, 4, -2}} 2*{{5,1},{-2,3}}+{{1,6},{-2,-2}} (2*{{5,1},{-2,3}}+{{1,6},{-2,-2}}).{{1},{0}} x+y+z=1 & x-y-3z=1 & x+2y+z=0 solve x+y+a=k & x-y-3a=1 & x+2y+a=0 for x,y,a x+y+z=1, x-y-3z=1, x+2y+z=0 inv({{1,1,1},{1,-1,-3},{1,2,1}}).{{1},{1},{0}} matrix (1/4, -1/2, 1) * (1/3, 1, -2/3) (1/4, -1/2, 1) . (1/3, 1, -2/3) direction (1,1,1) direction { (1,0,0),(0,1,0),(0,0,1),(1/2,1/2,0),(1,1,1) } compound interest continuous interest PV=$3800, rate=6%, periods=5 daily interest, FV=$1200, i=4.5%, n=10 mortgage mathworld subject finance y'' + y = 0 y'' + y = 0, y(1)=2, y'(1)=3 d^2/dt^2 s(t) = g, s(0) = 8, s'(0) = 0 {s''(t) = g, s(0) = 8, s'(0) = 5} dy/dx = x-y, y(-1) = 3 plot y(x) = x + 5 e^(-x - 1) - 1, for -1 <= x <= 5 slope field of dy/dx = x-y, for -1 <= x <= 5, -2 <= y <= 5 mathworld subject general differential equations plot z=sin(x)*cos(y) plot z=sin(x)*cos(y), x=-pi..2*pi, y=-pi/2..2*pi+pi/2 saddle points of z = sin(x)*sin(y) stationary points (3*x+1)*y^3 + x^2*y maximize 5 + 3x - 4y - x^2 + x y - y^2 maximize e^x*sin(y) on x^2+y^2=1 minimize e^x*sin(y) on x^2+y^2=1 domain of f(x,y) = log(1-(x^2+y^2)) maximize[{3x+y+z/2, {x+y+z<=4 && 2x+y+z<=6 && 0<=z<=20 && x>=0 && y>=0}}, {x,y,z}] plot (x-y)^4 + y^4 = 100, -2<x<2, -2<y<2 [ il grafico viene tracciato solo fino ad una certa quota - 80 - come posso verificare tracciando le curve di livello: ] (x-y)^4+y^4=0.5,(x-y)^4+y^4=2,(x-y)^4+y^4=8,(x-y)^4+y^4=32,(x-y)^4+y^4=128 for -2<x<2,-2<y<2 sup (x-y)^4 + y^4 , -2 < x < 2, -2 < y < 2 [ <- infatti il massimo è 272 ] Fermat's little theorem Dynamical Systems Pythagoras tree Konigsberg theorem Koch snowflake Julia set continuum hypothesis Riemann zeta function prime number theorem Who formulated the halting problem? continued fraction sqrt(2) Fourier series expand Fourier transform exp(-x^2) mathworld notation (simboli matematici) physical constants physical quantities laws of physics scalar vector tensor interest force Newton's laws miscellaneous constants units and measures measure pendulum red + green + yellow music Albert Einstein, Paul Dirac, Richard Feynman body measurements grow curve sun silver, gold, iron pear Social Statistics Historical Events biology natural science chemistry music major scale intervals C3 Eb3 Bb3 D4 G4 C3 Eb3 Bb3 D4 G4 F# G G A G C B G G A G D C genoa anagrams corde countries by area A4 italian Repubblica Italiana from Genoa to New York from Genoa to Turin from Genoa to Bogliasco Moon, Genoa Sun, Genoa translate integrale from Italian to English translate integral from English to Italian students repeating secondary school in Italy students secondary school in Italy students in Italy computer (seleziona "host information" e clicca "more") Genoa coordinates 44.4035 North, 8.9725 East 44 deg 24.2' North, 8 deg 58.35' East 44.4047 North, 8.9045 East 44.4088 North, 8.9266 East
Temi generali/general themes
Matematica
Fisica
programmini,immagini,
Altro software
English ↔ Italiano
(matem.)